an-improved-NLM-image-denoising-algorithm-based-on-edge-detection
Aiming at the removal of gaussian noise, we systematically analyze the shortage of non-local means image denonising algorithm (NLM), finding it is easy to lose structure information when dealing with the image containing complex edges and textures by NLM algorithm. In order to solve this problem, a non-local means image denoising based on edge detection is proposed in this thesis. The innovation of the proposed algorithm is mainly manifested in the following : (1) An improved Sobel operator with eight directions is proposed to extract a more accurate edge image; (2) To make the neighborhoods with similar structure obtain more weight, not only the Euclidean distance but also the edge image are considered when the similarity of neighborhoods is measured. Many experiments demonstrate that in both subjective and objective evaluation principles the performance of the improved algorithm has a good effect, and the visual effect of the denoised image is good.