• Stars
    star
    378
  • Rank 113,272 (Top 3 %)
  • Language
    Python
  • Created almost 5 years ago
  • Updated almost 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

天池2019广东工业智造创新大赛 布匹疵点检测 天池水也太深了 季军解决方案

2019广东工业智造创新大赛【赛场一】季军解决方案 全套代码

队伍:天池水也太深了

比赛地址:2019广东工业智造创新大赛 布匹疵点检测

NEW !!!

感谢大家的关注,由于近期很多同学需要数据学习使用,经过和天池的沟通,可以将数据共享给大家学习使用

数据下载地址:

百度网盘 (密码:jp7d)

TIPS:

因为官方给的原始数据压缩包大于4gb,我这里对每一个包进行了分卷压缩,大家注意分卷解压缩使用

core slides:

Aaron Swartz Aaron Swartz Aaron Swartz Aaron Swartz Aaron Swartz Aaron Swartz

算法流程&方案介绍 CFRCNN--变化检测思路

  • 输入图片预处理
    • 将代检测图片和模板图片沿通道方向合并, 变为hw6的矩阵
    • 归一化
    • resize padding等常规操作
  • 经过CFRCNN模型
    • 基本框架:Cascade-RCNN
    • 输入改变为6个通道的conv, 同时输入待检测图像和对应模板进行变化检测
    • backbone: resnet50
    • cascade 三个head 根据比赛map计算iou进行对应调整
    • 为了解决其中三类面积过大的问题, 额外训练一个小尺度大感受野的专家模型
    • 采用fp16加速训练和增大输入面积来缓解部分小目标问题
  • 后处理
    • NMS
    • 最大score二类后处理, 根据单个图片bbox最高score来对图像进行二次过滤, 判断该图像是否是正常样本

创新性

  • 变化检测
    • 根据赛题任务, 采用变化检测思路处理检测任务
    • 调整输入层为样本和模板同时输入 让模型学到目标和模板之间的变化差异, 使模型在切换模板后依然有良好泛化能力
  • 专家模型解决感受野不足问题
    • 为了降低模型复杂度, 没有采用大感受野复杂模型或者增加大anchor, 而是以resnet50为backbone
    • resnet50感受野不足, 并且原始anchor大小不足,导致缝头、缝头印和色差等面积很大的类漏检
    • 训练一个400尺度的大感受野专家模型
      • 去掉面积过小的目标, 保证梯度稳定
  • cascade iou阈值适应赛题map要求
    • cascade 每个head的预测bbox结果在其对应iou阈值的AP上效果最好
    • 根据比赛0.1 0.3 0.5的iou要求, 将cas三个head的iou阈值调整为0.4 0.5 0.6(可能 0.3 0.4 0.5效果更佳,未能尝试)
    • 同时rcnn 正负样例放松overlap要求放松为 0.6 0.2
  • 最大score二类后处理
    • 为了保持map的同时保证acc, 依据单个样本最高score的bbox置信度大小进行二次过滤分出正常图像

代码环境及依赖

  • OS: Ubuntu16.10
  • GPU: 2080Ti * 4
  • python: python3.7
  • nvidia 依赖:
    • cuda: 10.0.130
    • cudnn: 7.5.1
    • nvidia driver version: 430.14
  • deeplearning 框架: pytorch1.1.0
  • 其他依赖请参考requirement.txt

训练数据准备(后面训练部分会有阐述如何一次性运行,这里只阐述过程)

  • 相应文件夹创建准备

    • 在data目录中创建fabric文件夹

    • 进入fabric文件夹,创建以下文件夹:

      annotations

      Annotations

      defect_Images

      template_Images

  • 训练数据路径移动

    • 将 guangdong1_round2_train_part1_20190924,

      guangdong1_round2_train_part2_20190924,

      guangdong1_round2_train_part3_20190924和

      guangdong1_round2_train2_20191004_images中

      defect目录中的所有文件夹下的非模板图片复制到 data/fabric/defect_Images 目录下

    • 将 guangdong1_round2_train_part1_20190924,

      guangdong1_round2_train_part2_20190924,

      guangdong1_round2_train_part3_20190924和guangdong1_round2_train2_20191004_images中

      defect目录中的所有文件夹复制到 data/fabric/template_Images 目录下

  • label文件合并及格式转换

    • 将round2中两个轮次的label文件合并到 anno_train_round2.json中,然后移动到data/fabric/Annotations 目录下

    • 将刚才的label文件转换为COCO格式,新的label文件 instances_train_20191004_mmd.json 和 instances_train_20191004_mmd_100.json会保存在 data/fabric/annotations 目录下

  • 预训练模型下载

    • 使用mmdetection官方开源的casacde-rcnn-r50-fpn-2x的COCO预训练模型
    • 下载预训练模型后进行转换变为支持CFRCNN模型的预训练模型

依赖安装及编译

  • 依赖安装编译

    1. 创建并激活虚拟环境 conda create -n guangdong python=3.7 -y conda activate guangdong

    2. 安装 pytorch conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=10.0 -c pytorch

    3. 安装其他依赖 pip install cython && pip --no-cache-dir install -r requirements.txt

    4. 编译cuda op等: python setup.py develop

模型训练及预测

  • 训练 1. 运行: cd train & ./train.sh
2. 训练过程文件及最终权重文件均保存在data目录中
  • 预测
    1. 线上docker已经提交过预测全部内容,这里依然认为测试数据挂载在/tcdata

    2. 运行: ./run.sh

Contact

author:rill

email:[email protected]