VisemeNet Code Readme
Environment
- Python 3.5
- Tensorflow 1.1.0
- Cudnn 5.0
Python Package
- numpy
- scipy
- python_speech_features
- matplotlib
Input/Output
- Input audio needs to be 44.1kHz, 16-bit, WAV format
- Output visemes are applicable to the JALI-based face-rig, see HERE
JALI Viseme Annotation Dataset
At test time:
- Create and install required envs and packages
conda create -n visnet python=3.5
# take care of your OS and python version, here is a Linux-64bit with Python3.5 link
pip install --ignore-installed --upgrade https://download.tensorflow.google.cn/linux/gpu/tensorflow_gpu-1.1.0-cp35-cp35m-linux_x86_64.whl
pip install PYTHON_PACKAGE_REQUIRED
- Download this repository to your local machine:
git clone https://github.com/yzhou359/VisemeNet_tensorflow.git
cd VisemeNet_tensorflow
-
Prepare data and model:
- convert your test audio files into WAV format, put it to the directory data/test_audio/
- download the public face rig model from HERE, put all 4 files to data/ckpt/pretrain_biwi/
-
Forward inference:
- put your test audio file name in file 'main_test.py', line 7.
- Then run command line
python main_test.py
The result locates at:
data/output_viseme/[your_audio_file_name]/mayaparam_viseme.txt
- JALI animation in Maya:
- put your test audio file name in file 'maya_animation.py', line 4.
- Then run 'maya_animation.py' in Maya with JALI environment to create talking face animation automatically. (If using different version of JALI face rig, the name of phoneme/co-articulation variable might varies.)
- UPDATE: 'maya_animation.py' has been updated with the public face rig annotations. Feel free to play with it!