• Stars
    star
    305
  • Rank 136,879 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 6 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Ranking, acceptance rate, deadline, and publication tips

Data Mining Conferences


Knowledge Discovery and Data Mining is an interdisciplinary area focusing upon methodologies and applications for extracting useful knowledge from data [1]. Different from machine learning, Knowledge Discovery and Data Mining (KDD) is considered to be more practical and more related with real-world applications. Some good examples include recommender systems, clustering, graph mining, anomaly detection, and ensemble learning.

To facilitate KDD related research, we create this repository with:

  • Upcoming data mining (DM) conference submission date, notification date, and etc.
  • Historical conference acceptance rate
  • Conference ranking by CORE (2018), Qualis (2016), CCF (2015), and ERA (2012)
  • Publication tips from field experts

Table of Contents:


1. 2020-2021 Data Mining Conferences

Conference Submission Deadline Notification Conference Date Location Acceptance Rate (2018) Website
IEEE International Conference on Big Data (BigData) Aug 26, 2020 Oct 20, 2020 Dec 10-13, 2020 Virtual 19.7% Link
AAAI Conference on Artificial Intelligence (AAAI) Sep 01 (09), 2020 Dec 01, 2020 Feb 02-09, 2021 Virtual 20.6% Link
IEEE International Conference on Data Engineering (ICDE) [Second Round] Oct 07 (14), 2020 Dec 15, 2020 Apr 19-23, 2021 Chania, Crete, Greece 18% Link
SIAM International Conference on Data Mining (SDM) Sep 21, 2020 Dec TBA, 2020 Mar 25-27, 2021 Alexandria, Virginia, USA 22.9% Link
The Web Conference (WWW) Oct 12 (19), 2020 Jan 15, 2021 Apr 19-23, 2021 Ljubljana 15% Link
IEEE International Conference on Data Engineering (ICDE) Oct 08 (15), 2019 Dec 14, 2019 Apr 20-24, 2020 Dallas, Texas, USA 18% Link
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) Nov 18 (25), 2019 Jan 28, 2020 May 11-14, 2020 Singapore 24.1% Link
ACM SIGKDD International Conference on Knowledge discovery and data mining (KDD) Feb 13, 2020 May 15, 2020 Aug 22-27, 2020 San Diego, California 17.8% Link
European Conference on Machine learning and knowledge discovery in databases (ECML PKDD) Apr 02, 2020 Jun 04, 2020 Sep 14-18, 2020 Ghent, Belgium 25% Link
ACM International Conference on Information and Knowledge Management (CIKM) Apr 24 (1), 2020 Jul 03, 2020 Oct 19-23, 2020 Galway, Ireland 17% Link
IEEE International Conference on Data Mining (ICDM) Jun 12, 2020 Aug 20, 2020 Nov 17-20, 2020 Sorrento, Italy 19.8% Link
ACM SIGMOD/PODS Conference (SIGMOD) Jul 09, 2019 Oct 03, 2019 Jun 14-19, 2020 Portland, Oregon, USA 18% Link
ACM International Conference on Web Search and Data Mining (WSDM) Aug 16, 2020 Oct 16, 2019 Mar 08-12, 2021 Jerusalem, Israe 16.3% Link

2. Data Mining Conference Acceptance Rate

Conference Acceptance Rate Oral Presentation (otherwise poster)
KDD '19 17.8% (321/1808) N/A
KDD '18 18.4% (181/983, research track), 22.5% (112/497, applied data science track) 59.1% (107/181, research track), 35.7% (40/112, applied data science track)
KDD '17 17.4% (130/748, research track), 22.0% (86/390, applied data science track) 49.2% (64/130, research track), 41.9% (36/86, applied data science track)
KDD '16 18.1% (142/784, research track), 19.9% (66/331, applied data science track) 49.3% (70/142, research track), 60.1% (40/66, applied data science track)
SDM '19 22.7% (90/397) N/A
SDM '18 23.0% (86/374) N/A
SDM '17 26.0% (93/358) N/A
SDM '16 26.0% (96/370) N/A
ICDM '19* 18.5% (194/1046, overall), 9.1% (95/?, regular paper), ?% (99/?, short paper) N/A
ICDM '18* 19.8% (188/948, overall), 8.9% (84/?, regular paper), ?% (104/?, short paper) N/A
ICDM '17* 19.9% (155/778, overall), 9.3% (72/?, regular paper), ?% (83/?, short paper) N/A
ICDM '16* 19.6% (178/904, overall), 8.6% (78/?, regular paper), ?% (100/?, short paper) N/A
CIKM '19 19.6% (202/1031, long paper), 22.7% (107/471, short paper), 21.8% (38/174m applied research) N/A
CIKM '18 17% (147/826, long paper), 23% (96/413, short paper), 25% (demo), 34% (industry paper) Short papers are presented at poster sessions
CIKM '17 20% (171/855, long paper), 28% (119/419, short paper), 38% (30/80, demo paper) Short papers are presented at poster sessions
CIKM '16 23% (160/701, long paper), 24% (55/234, short paper), 54 extended short papers (6 pages) Short papers are presented at poster sessions
ECML PKDD '18 26% (94/354, research track), 26% (37/143, applied ds track), 15% (23/151, journal track) N/A
ECML PKDD '17 28% (104/364) N/A
ECML PKDD '16 28% (100/353) N/A
PAKDD '19 24.1% (137/567, overall) N/A
PAKDD '18 27.8% (164/592, overall), 9.8% (58/592, long presentation), 18.1% (107/592, regular) N/A
PAKDD '17 28.2% (129/458, overall), 9.8% (45/458, long presentation), 18.3% (84/458, regular) N/A
PAKDD '16 29.6% (91/307, overall), 12.7% (39/307, long presentation), 16.9% (52/307, regular) N/A
WSDM '19 16.4% (84/511, overall) 40.4% (34/84, long presentation), 59.5% (50/84, short presentation)^
WSDM '18 16.3% (84/514 in which 3 papers are withdrawn/rejected after the acceptance) 28.4% (23/81, long presentation), 71.6% (58/81, short presentation)^
WSDM '17 15.8% (80/505) 30% (24/80, long presentation), 70% (56/80, short presentation)^
WSDM '16 18.2% (67/368) 29.8% (20/67, long presentation), 70.2% (47/67, short presentation)^
WSDM '15 16.4% (39/238) 53.8% (21/39, long presentation), 46.2% (18/39, short presentation)^

*ICDM has two tracks (regular paper track and short paper track), but the exact statistic is not released, e.g., the split between these two tracks. See ICDM Acceptance Rates for more information.

^All accepted WSDM papers are associated with an interactive poster presentation in addition to oral presentations.

Conference stats are visualized below for a straightforward comparison.

Conference Stats

3. Conference Ranking

Conference CORE (2018) Qualis (2016) CCF (2019) ERA (2010)
ACM SIGKDD International Conference on Knowledge discovery and data mining (KDD) A* A1 A A
European Conference on Machine learning and knowledge discovery in databases (ECML PKDD) A A1 B A
IEEE International Conference on Data Mining (ICDM) A* A1 B A
SIAM International Conference on Data Mining (SDM) A A1 B A
ACM International Conference on Information and Knowledge Management (CIKM) A A1 B A
ACM International Conference on Web Search and Data Mining (WSDM) A* A1 B B
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) A A2 C A
The Web Conference (WWW) A* A1 A A
IEEE International Conference on Data Engineering (ICDE) A* A1 A A

Source and ranking explanation:


4. Tips for Doing Good DM Research & Get it Published!

How to do good research, Get it published in SIGKDD and get it cited!: a fantastic tutorial on SIGKDD'09 by Prof. Eamonn Keogh (UC Riverside).

Checklist for Revising a SIGKDD Data Mining Paper: a concise checklist by Prof. Eamonn Keogh (UC Riverside).

How to Write and Publish Research Papers for the Premier Forums in Knowledge & Data Engineering: a tutorial on how to structure data mining papers by Prof. Xindong Wu (University of Louisiana at Lafayette).


References

[1]IBM Research, 2018. Knowledge Discovery and Data Mining. https://researcher.watson.ibm.com/researcher/view_group.php?id=144

Last updated @ May 12th, 2019

More Repositories

1

pyod

A Comprehensive and Scalable Python Library for Outlier Detection (Anomaly Detection)
Python
7,613
star
2

anomaly-detection-resources

Anomaly detection related books, papers, videos, and toolboxes
Python
7,290
star
3

combo

(AAAI' 20) A Python Toolbox for Machine Learning Model Combination
Python
616
star
4

SUOD

(MLSys' 21) An Acceleration System for Large-scare Unsupervised Heterogeneous Outlier Detection (Anomaly Detection)
Python
363
star
5

awesome-ensemble-learning

Ensemble learning related books, papers, videos, and toolboxes
Python
256
star
6

pytod

TOD: GPU-accelerated Outlier Detection via Tensor Operations
Python
149
star
7

MetaOD

Automating Outlier Detection via Meta-Learning (Code, API, and Contribution Instructions)
Python
144
star
8

WSAD

A Collection of Resources for Weakly-supervised Anomaly Detection (WSAD)
Python
134
star
9

XGBOD

Supplementary material for IJCNN paper "XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning"
Python
69
star
10

LSCP

Supplementary material for SDM 19 paper "LSCP: Locally Selective Combination in Parallel Outlier Ensembles"
Python
29
star
11

DCSO

Supplementary material for KDD 2018 workshop "DCSO: Dynamic Combination of Detector Scores for Outlier Ensembles"
Python
19
star
12

UOMS

Resources and environment for unsupervised outlier model selection (UOMS)
Jupyter Notebook
17
star
13

mmad

multimodal anomaly detection
Python
13
star
14

yzhao062

11
star
15

OutlierDetection.jl

A Julia Library for Outlier Detection (Anomaly Detection)
Julia
9
star
16

fedod

Python
8
star
17

pyod-dask

An embarrassingly simple extension of PyOD for scalable outlier detection
8
star
18

ELECT

Toward Unsupervised Outlier Model Selection (ICDM 2022)
Python
6
star
19

algs

An AutoML system for algorithm selection (model selection)
3
star
20

DataStructure_CPP

It is a repository to store multiple implementation of data structures and algorithms in C++ written by me in the past several years.
C++
2
star
21

MLMM

A Monitoring framework to track Machine Learning Model training processes
2
star
22

SIML

SImilarity Measure Library: an extended python library for measuring similarities
2
star
23

Coding-questions

Elements in Interview C++ alternative solutions
C++
2
star
24

Simulation-Modeling-with-Machine-Learning

The project demonstrate how to incorporate simulation modeling with machine learning techniques
2
star
25

Financial-Models

2
star
26

OD-Econometrics

Outlier Detection and Removal for Econometrics Models
Python
1
star
27

starter-hugo-academic

1
star
28

yzhao062.github.io

HTML
1
star