• Stars
    star
    284
  • Rank 145,616 (Top 3 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。

Schema-based-Knowledge-Extraction

Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的联合端到端模型。

More efficient task solutions:https://github.com/yuanxiaosc/Multiple-Relations-Extraction-Only-Look-Once

竞赛简介

信息抽取(Information Extraction, IE)是从自然语言文本中抽取实体、属性、关系及事件等事实类信息的文本处理技术,是信息检索、智能问答、智能对话等人工智能应用的重要基础,一直受到业界的广泛关注。信息抽取任务涉及命名实体识别、指代消解、关系分类等复杂技术,极具挑战性。本次竞赛发布基于schema约束的SPO信息抽取任务,即在给定schema集合下,从自然语言文本中抽取出符合schema要求的SPO三元组知识。本次竞赛将提供业界规模最大的基于schema的中文信息抽取数据集(Schema based Knowledge Extraction, SKE),旨在为研究者提供学术交流平台,进一步提升中文信息抽取技术的研究水平,推动相关人工智能应用的发展。

竞赛详情

###1. 竞赛任务 给定schema约束集合及句子sent,其中schema定义了关系P以及其对应的主体S和客体O的类别,例如(S_TYPE:人物,P:妻子,O_TYPE:人物)、(S_TYPE:公司,P:创始人,O_TYPE:人物)等。 任务要求参评系统自动地对句子进行分析,输出句子中所有满足schema约束的SPO三元组知识Triples=[(S1, P1, O1), (S2, P2, O2)…]。 输入/输出: (1) 输入:schema约束集合及句子sent (2) 输出:句子sent中包含的符合给定schema约束的三元组知识Triples

2. 数据简介

本次竞赛使用的SKE数据集是业界规模最大的基于schema的中文信息抽取数据集,其包含超过43万三元组数据、21万中文句子及50个已定义好的schema,表1中展示了SKE数据集中包含的50个schema及对应的例子。数据集中的句子来自百度百科和百度信息流文本。数据集划分为17万训练集,2万验证集和2万测试集。其中训练集和验证集用于训练,可供自由下载,测试集分为两个,测试集1供参赛者在平台上自主验证,测试集2在比赛结束前一周发布,不能在平台上自主验证,并将作为最终的评测排名。

More Repositories

1

DeepImage-an-Image-to-Image-technology

DeepNude's algorithm and general image generation theory and practice research, including pix2pix, CycleGAN, UGATIT, DCGAN, SinGAN, ALAE, mGANprior, StarGAN-v2 and VAE models (TensorFlow2 implementation). DeepNude的算法以及通用生成对抗网络(GAN,Generative Adversarial Network)图像生成的理论与实践研究。
Python
5,168
star
2

Entity-Relation-Extraction

Entity and Relation Extraction Based on TensorFlow and BERT. 基于TensorFlow和BERT的管道式实体及关系抽取,2019语言与智能技术竞赛信息抽取任务解决方案。Schema based Knowledge Extraction, SKE 2019
Python
1,218
star
3

Machine-Learning-Book

《机器学习宝典》包含:谷歌机器学习速成课程(招式)+机器学习术语表(口诀)+机器学习规则(心得)+机器学习中的常识性问题 (内功)。该资源适用于机器学习、深度学习研究人员和爱好者参考!
Jupyter Notebook
1,031
star
4

BERT_Paper_Chinese_Translation

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 论文的中文翻译 Chinese Translation!
679
star
5

BERT-for-Sequence-Labeling-and-Text-Classification

This is the template code to use BERT for sequence lableing and text classification, in order to facilitate BERT for more tasks. Currently, the template code has included conll-2003 named entity identification, Snips Slot Filling and Intent Prediction.
Python
468
star
6

Multiple-Relations-Extraction-Only-Look-Once

Multiple-Relations-Extraction-Only-Look-Once. Just look at the sentence once and extract the multiple pairs of entities and their corresponding relations. 端到端联合多关系抽取模型,可用于 http://lic2019.ccf.org.cn/kg 信息抽取。
Python
346
star
7

Machine_Learning_bookshelf

机器学习深度学习相关书籍、课件、代码的仓库。 Machine learning is the warehouse of books, courseware and codes.
Jupyter Notebook
189
star
8

Multimodal-short-video-dataset-and-baseline-classification-model

500,000 multimodal short video data and baseline models. 50万条多模态短视频数据集和基线模型(TensorFlow2.0)。
Jupyter Notebook
125
star
9

Theoretical-Proof-of-Neural-Network-Model-and-Implementation-Based-on-Numpy

This resource implements a deep neural network through Numpy, and is equipped with easy-to-understand theoretical derivation, mainly for the in-depth understanding of neural networks. 神经网络模型的理论证明与基于Numpy的实现。
Python
77
star
10

Find-a-Machine-Learning-Job

找一份机器学习工作(算法工程师),需要提纲(算法能力)挈领(编程能力),充分准备。 本人学习和在找工作期间受到了很多前辈们的帮助,目前已经找到心仪的工作,撰写此文献给那些在求职路上有梦有汗水的人们!2020秋招算法,难度剧增!没有选择,只能迎难而上。
66
star
11

fan-ren-xiu-xian-zhuan

凡人修仙传(fanrenxiuxianzhuan)的资源汇总,谨献给“凡友”们。
Python
52
star
12

XLNet_Paper_Chinese_Translation

XLNet: Generalized Autoregressive Pretraining for Language Understanding 论文的中文翻译 Paper Chinese Translation!
50
star
13

Slot-Filling-and-Intention-Prediction-in-Paper-Translation

槽填充、意图预测(口语理解)论文整理和中文翻译。Slot filling and intent prediction paper collation and Chinese translation.
49
star
14

SMP2018

SMP2018中文人机对话技术评测(ECDT)
Jupyter Notebook
47
star
15

Image-Captioning

CNN-Encoder and RNN-Decoder (Bahdanau Attention) for image caption or image to text on MS-COCO dataset. 图片描述
Jupyter Notebook
35
star
16

ELMo

ELMo: Embeddings from Language Models. Using, visualizing and understanding EMLo by examples!
Jupyter Notebook
33
star
17

Text-generation-task-and-language-model-GPT2

solve text generation tasks by the language model GPT2, including papers, code, demo demos, and hands-on tutorials. 使用语言模型GPT2来解决文本生成任务的资源,包括论文、代码、展示demo和动手教程。
29
star
18

Transformer_implementation_and_application

The 300 lines of code (Tensorflow 2) completely replicates the Transformer model and is used in neural machine translation tasks and chat bots. 300行代码(Tensorflow 2)完整复现了Transformer模型,并且应用在神经机器翻译任务和聊天机器人上。
Jupyter Notebook
26
star
19

CPlusPlus-Programming-Language-Foundation

《CPlusPlus编程语言基础》又称为“C加加知识树”,用树状思维导图的形式展现C++从业人员必备的所有C++基础知识。
22
star
20

yuanxiaosc.github.io

个人博客;论文;机器学习;深度学习;Python学习;C++学习;
HTML
21
star
21

Keras_Attention_Seq2Seq

A sequence-to-sequence framework of Keras-based generative attention mechanisms that humans can read.一个人类可以阅读的基于Keras的代注意力机制的序列到序列的框架/模型,或许你不用写复杂的代码,直接使用吧。
Python
18
star
22

Deep_dynamic_contextualized_word_representation

TensorFlow code and pre-trained models for A Dynamic Word Representation Model Based on Deep Context. It combines the idea of BERT model and ELMo's deep context word representation.
Python
16
star
23

Path-Classification-Experiment

Introduction to Data Analysis: Path Classification Experiment. 本资源以选择最优路径为例详细介绍了如何解决一般的分类问题,包括原始数据的探索、模型的构建、模型调优和模型预测分析。包含前馈神经网络(Keras)、机器学习模型(sklearn)和绘制数据图表(matplotlib)的基础使用。
Jupyter Notebook
12
star
24

Deep-Convolutional-Generative-Adversarial-Network

Tensorflow 2. This repository demonstrates how to generate images of handwritten digits (MINIST) using a Deep Convolutional Generative Adversarial Network (DCGAN). 深度卷积生成对抗网络
Jupyter Notebook
9
star
25

NLPCC2019-Conference-Materials

NLPCC2019会议资料分享:论文投稿信息总结、NLP当前研究内容和趋势、学者演讲、海报、公司介绍和招聘信息。
7
star
26

Image_to_Text

Taking the image description task on the MS-COCO data set as an example, the template code of Image_to_Text is shown.
Jupyter Notebook
6
star
27

Slot-Gated-Modeling-for-Joint-Slot-Filling-and-Intent-Prediction

Code parsing and paper parsing for "Slot-Gated Modeling for Joint Slot Filling and Intent Prediction"
Python
5
star
28

Seq2Seq-English-French-Machine-Translation-Model

Seq2Seq English-French Machine Translation Model
Python
5
star
29

Hands-on-chat-robots

There are a variety of out-of-the-box chat bot codes here.
Jupyter Notebook
3
star