• Stars
    star
    125
  • Rank 286,335 (Top 6 %)
  • Language
    Jupyter Notebook
  • Created over 5 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

500,000 multimodal short video data and baseline models. 50万条多模态短视频数据集和基线模型(TensorFlow2.0)。

Multimodal Short Video Data Set and Baseline Classification Model

If you have data / access to data / better model, please feel free to issue /pull requests / contact me [email protected]

This resource contains 50+ million(865G) multimodal short video data sets and TensorFlow2.0 multimodal short video classification model, aiming at creating a multimodal classification framework.

Multimodal short video data = short video description text + short video cover image + short video

本资源含有 50+ 万条(865G)多模态短视频数据集和 TensorFlow2.0 多模态短视频分类模型,旨在打造多模态分类框架。

多模态短视频数据 = 短视频描述文本 + 短视频封面图 + 短视频

click to view example data


1. Multimodal dataset information

The current multimodal short video dataset contains 50+ million multimodal data, covering 31 categories, occupying a total of 865G space. Download and unzip the multimodal_data_info.rar file and you will get the download address for all datas. You can download them directly using data_download_tools, but you can also use your own download tool.

目前多模态短视频数据集含有50+万条多模态数据,它们涵盖31个类别,共占用865G空间。下载并解压 multimodal_data_info.rar 文件,你可以获得所有数据的下载地址。你可以直接使用 data_download_tools 下载它们,当然你也可以使用自己的下载工具。

Multimodal data (31 types)

Video category Chinese and English mapping dictionary 视频种类中英文映射字典

video_type_dict = {'360VR': 'VR', '4k': '4K', 'Technology': '科技', 'Sport': '运动', 'Timelapse': '延时',
                   'Aerial': '航拍', 'Animals': '动物', 'Sea': '大海', 'Beach': '海滩', 'space': '太空',
                   'stars': '星空', 'City': '城市', 'Business': '商业', 'Underwater': '水下摄影',
                   'Wedding': '婚礼', 'Archival': '档案', 'Backgrounds': '背景', 'Alpha Channel': '透明通道',
                   'Intro': '开场', 'Celebration': '庆典', 'Clouds': '云彩', 'Corporate': '企业',
                   'Explosion': '爆炸', 'Film': '电影镜头', 'Green Screen': '绿幕', 'Military': '军事',
                   'Nature': '自然', 'News': '新闻', 'R3d': 'R3d', 'Romantic': '浪漫', 'Abstract': '抽象'}

In addition to 360VR type video data, each of the other types has approximately 20,000 pieces of data. You can check the contents of all multimodal files at any time using the download_file_info.ipynb tool in data_download_tools. As follows:

除了360VR类型的视频数据,其它每个类型有大约20000条数据。你可以使用data_download_tools中的download_file_info.ipynb工具随时检查所有多模态文件的内容,如下所示:

Check the disk space occupied by the data. 检查数据占用的磁盘空间。

Check a type of video cover image and corresponding video description information. 检查某个类型的视频封面图以及对应的视频描述信息。

multimodal data statistics

The multimodal_data_info.json file contains statistics on 562,342 multimodal data, ['mp4_id', 'video_label', 'mp4_time', 'mp4_download_url', 'mp4_background_image_url', 'mp4_txt_brief'] content.

The content of multimodal_data_info.json is as follows:

{"mp4_id": "80328682", "mp4_download_url": "https://p5-v1.xpccdn.com/080328682_main_xl.mp4",
 "mp4_time": "0:16", "mp4_background_image_url": "https://p5-i1.xpccdn.com/080328682_iconl.jpeg",
 "mp4_txt_brief": " Woman in swimsuit and cover up walking at the beach", "video_label": "Beach"}

{"mp4_id": "63660083", "mp4_download_url": "https://p5-v1.xpccdn.com/063660083_main_xl.mp4",
"mp4_time": "0:29", "mp4_background_image_url": "https://p5-i1.xpccdn.com/063660083_iconl.jpeg",
 "mp4_txt_brief": " 4K Happy female friends chatting & drinking on city rooftop in the summer", "video_label": "City"}

You can use the data_analysis.ipynb tool in aggregate_download_data_to_a_json_file to count the data of a multimodal file. The statistics are as follows.

你可以使用aggregate_download_data_to_a_json_file中的data_analysis.ipynb工具统计多模态文件的数据,统计结果如下所示。


2. Baseline Classification Model

查看我的博客 短视频分类技术 获取更多短视频分类信息。

Model structure picture 模型结构图

Model structure test 模型结构测试

Click on baseline_model to learn more

Require

  • python 3+, e.g. python==3.6
  • tensorflow version 2, e.g. tensorflow==2.0.0-beta1
  • tensorflow-datasets

Train Model

python train_multimodal_baseline_model.py

4. Build your own model

Click on data_interface_for_model to learn more

Data can be easily provided to your model using the data_interface_for_model data interface. Data_interface_for_model contains three types of data interfaces: tensor required by TensorFlow, numpy required by Pytorch, and native Python type.

可以使用data_interface_for_model 数据接口方便的为你的模型提供数据。data_interface_for_model包含三种类型的数据接口,分别是:TensorFlow需要的tensor、Pytorch需要的numpy和原生的Python类型。


5. Copyright Statement

Currently all multimodal video data comes from the Internet, and the data is copyrighted by the original author. If this data (from https://xinpianchang.com) is used for profit, please contact [email protected] to purchase data copyright.

目前所有多模态视频数据来自互联网,该数据版权归原作者所有。如果将该数据(来自 https://xinpianchang.com )用于牟利,请联系 [email protected] 购买数据版权。

More Repositories

1

DeepImage-an-Image-to-Image-technology

DeepNude's algorithm and general image generation theory and practice research, including pix2pix, CycleGAN, UGATIT, DCGAN, SinGAN, ALAE, mGANprior, StarGAN-v2 and VAE models (TensorFlow2 implementation). DeepNude的算法以及通用生成对抗网络(GAN,Generative Adversarial Network)图像生成的理论与实践研究。
Python
5,168
star
2

Entity-Relation-Extraction

Entity and Relation Extraction Based on TensorFlow and BERT. 基于TensorFlow和BERT的管道式实体及关系抽取,2019语言与智能技术竞赛信息抽取任务解决方案。Schema based Knowledge Extraction, SKE 2019
Python
1,218
star
3

Machine-Learning-Book

《机器学习宝典》包含:谷歌机器学习速成课程(招式)+机器学习术语表(口诀)+机器学习规则(心得)+机器学习中的常识性问题 (内功)。该资源适用于机器学习、深度学习研究人员和爱好者参考!
Jupyter Notebook
1,031
star
4

BERT_Paper_Chinese_Translation

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 论文的中文翻译 Chinese Translation!
679
star
5

BERT-for-Sequence-Labeling-and-Text-Classification

This is the template code to use BERT for sequence lableing and text classification, in order to facilitate BERT for more tasks. Currently, the template code has included conll-2003 named entity identification, Snips Slot Filling and Intent Prediction.
Python
468
star
6

Multiple-Relations-Extraction-Only-Look-Once

Multiple-Relations-Extraction-Only-Look-Once. Just look at the sentence once and extract the multiple pairs of entities and their corresponding relations. 端到端联合多关系抽取模型,可用于 http://lic2019.ccf.org.cn/kg 信息抽取。
Python
346
star
7

Schema-based-Knowledge-Extraction

Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。
Python
284
star
8

Machine_Learning_bookshelf

机器学习深度学习相关书籍、课件、代码的仓库。 Machine learning is the warehouse of books, courseware and codes.
Jupyter Notebook
189
star
9

Theoretical-Proof-of-Neural-Network-Model-and-Implementation-Based-on-Numpy

This resource implements a deep neural network through Numpy, and is equipped with easy-to-understand theoretical derivation, mainly for the in-depth understanding of neural networks. 神经网络模型的理论证明与基于Numpy的实现。
Python
77
star
10

Find-a-Machine-Learning-Job

找一份机器学习工作(算法工程师),需要提纲(算法能力)挈领(编程能力),充分准备。 本人学习和在找工作期间受到了很多前辈们的帮助,目前已经找到心仪的工作,撰写此文献给那些在求职路上有梦有汗水的人们!2020秋招算法,难度剧增!没有选择,只能迎难而上。
66
star
11

fan-ren-xiu-xian-zhuan

凡人修仙传(fanrenxiuxianzhuan)的资源汇总,谨献给“凡友”们。
Python
52
star
12

XLNet_Paper_Chinese_Translation

XLNet: Generalized Autoregressive Pretraining for Language Understanding 论文的中文翻译 Paper Chinese Translation!
50
star
13

Slot-Filling-and-Intention-Prediction-in-Paper-Translation

槽填充、意图预测(口语理解)论文整理和中文翻译。Slot filling and intent prediction paper collation and Chinese translation.
49
star
14

SMP2018

SMP2018中文人机对话技术评测(ECDT)
Jupyter Notebook
47
star
15

Image-Captioning

CNN-Encoder and RNN-Decoder (Bahdanau Attention) for image caption or image to text on MS-COCO dataset. 图片描述
Jupyter Notebook
35
star
16

ELMo

ELMo: Embeddings from Language Models. Using, visualizing and understanding EMLo by examples!
Jupyter Notebook
33
star
17

Text-generation-task-and-language-model-GPT2

solve text generation tasks by the language model GPT2, including papers, code, demo demos, and hands-on tutorials. 使用语言模型GPT2来解决文本生成任务的资源,包括论文、代码、展示demo和动手教程。
29
star
18

Transformer_implementation_and_application

The 300 lines of code (Tensorflow 2) completely replicates the Transformer model and is used in neural machine translation tasks and chat bots. 300行代码(Tensorflow 2)完整复现了Transformer模型,并且应用在神经机器翻译任务和聊天机器人上。
Jupyter Notebook
26
star
19

CPlusPlus-Programming-Language-Foundation

《CPlusPlus编程语言基础》又称为“C加加知识树”,用树状思维导图的形式展现C++从业人员必备的所有C++基础知识。
22
star
20

yuanxiaosc.github.io

个人博客;论文;机器学习;深度学习;Python学习;C++学习;
HTML
21
star
21

Keras_Attention_Seq2Seq

A sequence-to-sequence framework of Keras-based generative attention mechanisms that humans can read.一个人类可以阅读的基于Keras的代注意力机制的序列到序列的框架/模型,或许你不用写复杂的代码,直接使用吧。
Python
18
star
22

Deep_dynamic_contextualized_word_representation

TensorFlow code and pre-trained models for A Dynamic Word Representation Model Based on Deep Context. It combines the idea of BERT model and ELMo's deep context word representation.
Python
16
star
23

Path-Classification-Experiment

Introduction to Data Analysis: Path Classification Experiment. 本资源以选择最优路径为例详细介绍了如何解决一般的分类问题,包括原始数据的探索、模型的构建、模型调优和模型预测分析。包含前馈神经网络(Keras)、机器学习模型(sklearn)和绘制数据图表(matplotlib)的基础使用。
Jupyter Notebook
12
star
24

Deep-Convolutional-Generative-Adversarial-Network

Tensorflow 2. This repository demonstrates how to generate images of handwritten digits (MINIST) using a Deep Convolutional Generative Adversarial Network (DCGAN). 深度卷积生成对抗网络
Jupyter Notebook
9
star
25

NLPCC2019-Conference-Materials

NLPCC2019会议资料分享:论文投稿信息总结、NLP当前研究内容和趋势、学者演讲、海报、公司介绍和招聘信息。
7
star
26

Image_to_Text

Taking the image description task on the MS-COCO data set as an example, the template code of Image_to_Text is shown.
Jupyter Notebook
6
star
27

Slot-Gated-Modeling-for-Joint-Slot-Filling-and-Intent-Prediction

Code parsing and paper parsing for "Slot-Gated Modeling for Joint Slot Filling and Intent Prediction"
Python
5
star
28

Seq2Seq-English-French-Machine-Translation-Model

Seq2Seq English-French Machine Translation Model
Python
5
star
29

Hands-on-chat-robots

There are a variety of out-of-the-box chat bot codes here.
Jupyter Notebook
3
star