ICCV 2021
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet,Update:
2021/03/11: update our new results. Now our T2T-ViT-14 with 21.5M parameters can reach 81.5% top1-acc with 224x224 image resolution, and 83.3% top1-acc with 384x384 resolution.
2021/02/21: T2T-ViT can be trained on most of common GPUs: 1080Ti, 2080Ti, TiTAN V, V100 stably with '--amp' (Automatic Mixed Precision). In some specifical GPU like Tesla T4, 'amp' would cause NAN loss when training T2T-ViT. If you get NAN loss in training, you can disable amp by removing '--amp' in the training scripts.
2021/01/28: release codes and upload most of the pretrained models of T2T-ViT.
Reference
If you find this repo useful, please consider citing:
@InProceedings{Yuan_2021_ICCV,
author = {Yuan, Li and Chen, Yunpeng and Wang, Tao and Yu, Weihao and Shi, Yujun and Jiang, Zi-Hang and Tay, Francis E.H. and Feng, Jiashi and Yan, Shuicheng},
title = {Tokens-to-Token ViT: Training Vision Transformers From Scratch on ImageNet},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {558-567}
}
Our codes are based on the official imagenet example by PyTorch and pytorch-image-models by Ross Wightman
1. Requirements
timm, pip install timm==0.3.4
torch>=1.4.0
torchvision>=0.5.0
pyyaml
data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.
โimagenet/
โโโtrain/
โ โโโ n01440764
โ โ โโโ n01440764_10026.JPEG
โ โ โโโ n01440764_10027.JPEG
โ โ โโโ ......
โ โโโ ......
โโโval/
โ โโโ n01440764
โ โ โโโ ILSVRC2012_val_00000293.JPEG
โ โ โโโ ILSVRC2012_val_00002138.JPEG
โ โ โโโ ......
โ โโโ ......
2. T2T-ViT Models
Model | T2T Transformer | Top1 Acc | #params | MACs | Download |
---|---|---|---|---|---|
T2T-ViT-14 | Performer | 81.5 | 21.5M | 4.8G | here |
T2T-ViT-19 | Performer | 81.9 | 39.2M | 8.5G | here |
T2T-ViT-24 | Performer | 82.3 | 64.1M | 13.8G | here |
T2T-ViT-14, 384 | Performer | 83.3 | 21.7M | here | |
T2T-ViT-24, Token Labeling | Performer | 84.2 | 65M | here | |
T2T-ViT_t-14 | Transformer | 81.7 | 21.5M | 6.1G | here |
T2T-ViT_t-19 | Transformer | 82.4 | 39.2M | 9.8G | here |
T2T-ViT_t-24 | Transformer | 82.6 | 64.1M | 15.0G | here |
The 'T2T-ViT-14, 384' means we train T2T-ViT-14 with image size of 384 x 384.
The 'T2T-ViT-24, Token Labeling' means we train T2T-ViT-24 with Token Labeling.
The three lite variants of T2T-ViT (Comparing with MobileNets):
Model | T2T Transformer | Top1 Acc | #params | MACs | Download |
---|---|---|---|---|---|
T2T-ViT-7 | Performer | 71.7 | 4.3M | 1.1G | here |
T2T-ViT-10 | Performer | 75.2 | 5.9M | 1.5G | here |
T2T-ViT-12 | Performer | 76.5 | 6.9M | 1.8G | here |
Usage
The way to use our pretrained T2T-ViT:
from models.t2t_vit import *
from utils import load_for_transfer_learning
# create model
model = t2t_vit_14()
# load the pretrained weights
load_for_transfer_learning(model, /path/to/pretrained/weights, use_ema=True, strict=False, num_classes=1000) # change num_classes based on dataset, can work for different image size as we interpolate the position embeding for different image size.
3. Validation
Test the T2T-ViT-14 (take Performer in T2T module),
Download the T2T-ViT-14, then test it by running:
CUDA_VISIBLE_DEVICES=0 python main.py path/to/data --model t2t_vit_14 -b 100 --eval_checkpoint path/to/checkpoint
The results look like:
Test: [ 0/499] Time: 2.083 (2.083) Loss: 0.3578 (0.3578) Acc@1: 96.0000 (96.0000) Acc@5: 99.0000 (99.0000)
Test: [ 50/499] Time: 0.166 (0.202) Loss: 0.5823 (0.6404) Acc@1: 85.0000 (86.1569) Acc@5: 99.0000 (97.5098)
...
Test: [ 499/499] Time: 0.272 (0.172) Loss: 1.3983 (0.8261) Acc@1: 62.0000 (81.5000) Acc@5: 93.0000 (95.6660)
Top-1 accuracy of the model is: 81.5%
Test the three lite variants: T2T-ViT-7, T2T-ViT-10, T2T-ViT-12 (take Performer in T2T module),
Download the T2T-ViT-7, T2T-ViT-10 or T2T-ViT-12, then test it by running:
CUDA_VISIBLE_DEVICES=0 python main.py path/to/data --model t2t_vit_7 -b 100 --eval_checkpoint path/to/checkpoint
Test the model T2T-ViT-14, 384 with 83.3% top-1 accuracy:
CUDA_VISIBLE_DEVICES=0 python main.py path/to/data --model t2t_vit_14 --img-size 384 -b 100 --eval_checkpoint path/to/T2T-ViT-14-384
4. Train
Train the three lite variants: T2T-ViT-7, T2T-ViT-10 and T2T-ViT-12 (take Performer in T2T module):
If only 4 GPUs are available,
CUDA_VISIBLE_DEVICES=0,1,2,3 ./distributed_train.sh 4 path/to/data --model t2t_vit_7 -b 128 --lr 1e-3 --weight-decay .03 --amp --img-size 224
The top1-acc in 4 GPUs would be slightly lower than 8 GPUs (around 0.1%-0.3% lower).
If 8 GPUs are available:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model t2t_vit_7 -b 64 --lr 1e-3 --weight-decay .03 --amp --img-size 224
Train the T2T-ViT-14 and T2T-ViT_t-14 (run on 4 or 8 GPUs):
CUDA_VISIBLE_DEVICES=0,1,2,3 ./distributed_train.sh 4 path/to/data --model t2t_vit_14 -b 128 --lr 1e-3 --weight-decay .05 --amp --img-size 224
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model t2t_vit_14 -b 64 --lr 5e-4 --weight-decay .05 --amp --img-size 224
If you want to train our T2T-ViT on images with 384x384 resolution, please use '--img-size 384'.
Train the T2T-ViT-19, T2T-ViT-24 or T2T-ViT_t-19, T2T-ViT_t-24:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./distributed_train.sh 8 path/to/data --model t2t_vit_19 -b 64 --lr 5e-4 --weight-decay .065 --amp --img-size 224
5. Transfer T2T-ViT to CIFAR10/CIFAR100
Model | ImageNet | CIFAR10 | CIFAR100 | #params |
---|---|---|---|---|
T2T-ViT-14 | 81.5 | 98.3 | 88.4 | 21.5M |
T2T-ViT-19 | 81.9 | 98.4 | 89.0 | 39.2M |
We resize CIFAR10/100 to 224x224 and finetune our pretrained T2T-ViT-14/19 to CIFAR10/100 by running:
CUDA_VISIBLE_DEVICES=0,1 python transfer_learning.py --lr 0.05 --b 64 --num-classes 10 --img-size 224 --transfer-learning True --transfer-model /path/to/pretrained/T2T-ViT-19
6. Visualization
Visualize the image features of ResNet50, you can open and run the visualization_resnet.ipynb file in jupyter notebook or jupyter lab; some results are given as following:
Visualize the image features of ViT, you can open and run the visualization_vit.ipynb file in jupyter notebook or jupyter lab; some results are given as following:
Visualize attention map, you can refer to this file. A simple example by visualizing the attention map in attention block 4 and 5 is: