Neural Cages for Detail-Preserving 3D Deformations
[project page][pdf][supplemental]
Installation
git clone --recursive https://github.com/yifita/deep_cage.git
# install dependency
cd pytorch_points
conda env create --name pytorch-all --file environment.yml
python setup.py develop
# install pymesh2
# if this step fails, try to install pymesh from source as instructed here
# https://pymesh.readthedocs.io/en/latest/installation.html
# make sure that the cmake 3.15+ is used
pip install pymesh/pymesh2-0.2.1-cp37-cp37m-linux_x86_64.whl
# install other dependecies
pip install -r requirements.txt
Trained model
Download trained models from https://igl.ethz.ch/projects/neural-cage/trained_models.zip.
Unzip under trained_models
. You should get several subfolders under trained_models
, e.g. trained_models/chair_ablation_full
etc.
Optional
install Thea https://github.com/sidch/Thea to batch render outputs
Demo
- download shapenet data
wget https://igl.ethz.ch/projects/neural-cage/processed_shapenetseg.zip
- deform source shape to target shape
❗ To test your with your own chair models, please make sure that your data is axis-aligned in the same way as our provided examples.
# results will be saved in trained_models/chair_ablation_full/test
python cage_deformer_3d.py --dataset SHAPENET --full_net --bottleneck_size 256 --n_fold 2 --ckpt trained_models/chair_ablation_full/net_final.pth --target_model data/shapenet_target/**/*.obj --source_model data/elaborated_chairs/throne_no_base.obj data/elaborated_chairs/Chaise_longue_noir_House_Doctor.ply --subdir fancy_chairs --phase test --is_poly
Example: input - target - output
- deformation transfer
# download surreal data from 3DCoded
cd data && mkdir Surreal && cd Surreal
wget https://raw.githubusercontent.com/ThibaultGROUEIX/3D-CODED/master/data/download_dataset.sh
chmod a+'x' download_dataset.sh
./download_dataset.sh
# baseline deform the original training source
python deformer_3d.py --dataset SURREAL --nepochs 2 --data_dir data/Surreal --batch_size 1 --num_point 6890 --bottleneck_size 1024 --template data/cage_tpose.ply --source_model data/surreal_template_tpose.ply --ckpt trained_models/tpose_atlas_b1024/net_final.pth --phase test
# deformation transfer to a skeleton
python optimize_cage.py --dataset SURREAL --nepochs 3000 --data_dir data/Surreal --num_point 6890 --bottleneck_size 1024 --clap_weight 0.05 --template data/cage_tpose.ply --model data/fancy_humanoid/Skeleton/skeleton_tpose.obj --subdir skeleton --source_model data/surreal_template_tpose.ply --ckpt trained_model/tpose_atlas_b1024/net_final.pth --lr 0.005 --is_poly
# deformation transfer to a robot (with another model, which is trained using resting pose instead of the tpose)
python optimize_cage.py --ckpt trained_models/rpose_mlp/net_final.pth --nepochs 8000 --mlp --num_point 6890 --phase test --dataset SURREAL --data_dir data/Surreal --model data/fancy_humanoid/robot.obj --subdir robot --source_model data/surreal_template.ply --clap_weight 0.1 --lr 0.0005 --template data/surreal_template_v77.ply
Training
ShapeNet deformations
A binary file storing preprocessed training data is provided data/train_Chair_-1_2500.pkl
. This consists of the chair models from the PartSegv0 subset of ShapeNetCore.v1 dataset.
The following command is what we ran to create our results in the paper.
python cage_deformer.py --data_cat Chair --dataset SHAPENET --data_dir {ROOT_POINT_DIR} \
--batch_size 8 --nepochs 12 --num_point 1024 --bottleneck_size 256 --n_fold 2 --loss CD \
--name shapenet_chairs --mvc_weight 0.1 --sym_weight 0.5 --p2f_weight 0.1 --snormal_weight 0.1 --full_net
Data generation
You can also create your own data from shapenet.
- Download data from ShapeNet.org. Make sure that a
synsetoffset2category.txt
file is located in the root directory. If it doesn't, you can copydata/processed_shapenetseg/synsetoffset2category.txt
to the root directory. - Sample points from ShapeNet using the
scripts/resample_shapenet.py
python resample_shapenet.py {INPUT_DIR} {OUTPUT_DIR}
# example
python resample_shapenet.py /home/mnt/points/data/ShapeNet/ShapeNetCore.v2/04530566 /home/mnt/points/data/ShapeNet/ShapeNetCore.v2.5000p/
Alternatively, you can use the presampled point data provided by Thibault (https://github.com/ThibaultGROUEIX/AtlasNet/blob/master/dataset/download_shapenet_pointclouds.sh).
Humanoid deformations
Train a deformation only model with a fixed source shape and cage.
The comman below will use the rest pose source shape and the a handcreated source cage
One can also use --template data/surreal_template_v77.ply
, which is a cage created by edge collapsing.
python deformer_3d.py --dataset SURREAL --nepochs 3 --data_dir data/Surreal --batch_size 4 --warmup_epoch 0.5 \
--num_point 2048 --bottleneck_size 512 --template data/cage_rpose.obj --source_model data/surreal_template.ply \
--mvc_weight 1.0 --loss MSE --mlp --name surreal_rpose
For deformation transfer, we use Thea to mark correspondences. An example of the landmarks is shown below.
This creates a landmark file such as data/surreal_template.picked
, which will be used by optimize_cage.py
to adapt the source cage to a novel target shape.
cite
@inproceedings{Yifan:NeuralCage:2020,
author={Wang Yifan and Noam Aigerman and Vladimir G. Kim and Siddhartha Chaudhuri and Olga Sorkine-Hornung},
title={Neural Cages for Detail-Preserving 3D Deformations},
booktitle = {CVPR},
year = {2020},
}