• Stars
    star
    139
  • Rank 262,954 (Top 6 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated almost 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

PyTorch implementation of the ACL 2019 paper "Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader"

Code for the ACL 2019 paper:

Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader

Paper link: https://arxiv.org/abs/1905.07098

Model Overview:

Requirements

  • PyTorch 1.0.1
  • tensorboardX
  • tqdm
  • gluonnlp

Prepare data

mkdir datasets && cd datasets && wget https://sites.cs.ucsb.edu/~xwhan/datasets/webqsp.tar.gz && tar -xzvf webqsp.tar.gz && cd ..

Full KB setting

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_full_kb --max_num_neighbors 50 --label_smooth 0.1 --data_folder datasets/webqsp/full/ 

Incomplete KB setting

Note: The Hits@1 should match or be slightly better than the number reported in the paper. More tuning on threshold should give you better F1 score.

30% KB

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_kb_03 --max_num_neighbors 50 --use_doc --data_folder datasets/webqsp/kb_03/ --eps 0.05

10% KB

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_kb_01 --max_num_neighbors 50 --use_doc --data_folder datasets/webqsp/kb_01/ --eps 0.05

50% KB

CUDA_VISIBLE_DEVICES=0 python train.py --model_id KAReader_kb_05 --num_layer 1 --max_num_neighbors 100 --use_doc --data_folder datasets/webqsp/kb_05/ --eps 0.05 --seed 3 --hidden_drop 0.05

Citation

@inproceedings{xiong-etal-2019-improving,
    title = "Improving Question Answering over Incomplete {KB}s with Knowledge-Aware Reader",
    author = "Xiong, Wenhan  and
      Yu, Mo  and
      Chang, Shiyu  and
      Guo, Xiaoxiao  and
      Wang, William Yang",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1417",
    doi = "10.18653/v1/P19-1417",
    pages = "4258--4264",
}