• Stars
    star
    2,105
  • Rank 21,922 (Top 0.5 %)
  • Language
    C++
  • License
    BSD 3-Clause "New...
  • Created over 8 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

C++ wrappers for SIMD intrinsics and parallelized, optimized mathematical functions (SSE, AVX, AVX512, NEON, SVE))

xsimd

Appveyor Azure Documentation Status Join the Gitter Chat

C++ wrappers for SIMD intrinsics

Introduction

SIMD (Single Instruction, Multiple Data) is a feature of microprocessors that has been available for many years. SIMD instructions perform a single operation on a batch of values at once, and thus provide a way to significantly accelerate code execution. However, these instructions differ between microprocessor vendors and compilers.

xsimd provides a unified means for using these features for library authors. Namely, it enables manipulation of batches of numbers with the same arithmetic operators as for single values. It also provides accelerated implementation of common mathematical functions operating on batches.

You can find out more about this implementation of C++ wrappers for SIMD intrinsics at the The C++ Scientist. The mathematical functions are a lightweight implementation of the algorithms used in boost.SIMD.

xsimd requires a C++11 compliant compiler. The following C++ compilers are supported:

Compiler Version
Microsoft Visual Studio MSVC 2015 update 2 and above
g++ 4.9 and above
clang 4.0 and above

The following SIMD instruction set extensions are supported:

Architecture Instruction set extensions
x86 SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, FMA3+SSE, FMA3+AVX, FMA3+AVX2
x86 AVX512BW, AVX512CD, AVX512DQ, AVX512F (gcc7 and higher)
x86 AMD FMA4
ARM NEON, NEON64, SVE128/256/512 (fixed vector size)

Installation

Install from conda-forge

A package for xsimd is available on the mamba (or conda) package manager.

mamba install -c conda-forge xsimd

Install with Spack

A package for xsimd is available on the Spack package manager.

spack install xsimd
spack load xsimd

Install from sources

You can directly install it from the sources with cmake:

cmake -D CMAKE_INSTALL_PREFIX=your_install_prefix
make install

Documentation

To get started with using xsimd, check out the full documentation

http://xsimd.readthedocs.io/

Dependencies

xsimd has an optional dependency on the xtl library:

xsimd xtl (optional)
master ^0.7.0
10.x ^0.7.0
9.x ^0.7.0
8.x ^0.7.0

The dependency on xtl is required if you want to support vectorization for xtl::xcomplex. In this case, you must build your project with C++14 support enabled.

Usage

The version 8 of the library is a complete rewrite and there are some slight differences with 7.x versions. A migration guide will be available soon. In the meanwhile, the following examples show how to use both versions 7 and 8 of the library?

Explicit use of an instruction set extension

Here is an example that computes the mean of two sets of 4 double floating point values, assuming AVX extension is supported:

#include <iostream>
#include "xsimd/xsimd.hpp"

namespace xs = xsimd;

int main(int argc, char* argv[])
{
    xs::batch<double, xs::avx2> a = {1.5, 2.5, 3.5, 4.5};
    xs::batch<double, xs::avx2> b = {2.5, 3.5, 4.5, 5.5};
    auto mean = (a + b) / 2;
    std::cout << mean << std::endl;
    return 0;
}

Do not forget to enable AVX extension when building the example. With gcc or clang, this is done with the -mavx flag, on MSVC you have to pass the /arch:AVX option.

This example outputs:

(2.0, 3.0, 4.0, 5.0)

Auto detection of the instruction set extension to be used

The same computation operating on vectors and using the most performant instruction set available:

#include <cstddef>
#include <vector>
#include "xsimd/xsimd.hpp"

namespace xs = xsimd;
using vector_type = std::vector<double, xsimd::aligned_allocator<double>>;

void mean(const vector_type& a, const vector_type& b, vector_type& res)
{
    std::size_t size = a.size();
    constexpr std::size_t simd_size = xsimd::simd_type<double>::size;
    std::size_t vec_size = size - size % simd_size;

    for(std::size_t i = 0; i < vec_size; i += simd_size)
    {
        auto ba = xs::load_aligned(&a[i]);
        auto bb = xs::load_aligned(&b[i]);
        auto bres = (ba + bb) / 2.;
        bres.store_aligned(&res[i]);
    }
    for(std::size_t i = vec_size; i < size; ++i)
    {
        res[i] = (a[i] + b[i]) / 2.;
    }
}

Building and Running the Tests

Building the tests requires cmake.

cmake is available as a package for most linux distributions. Besides, they can also be installed with the conda package manager (even on windows):

conda install -c conda-forge cmake

Once cmake is installed, you can build and run the tests:

mkdir build
cd build
cmake ../ -DBUILD_TESTS=ON
make xtest

In the context of continuous integration with Travis CI, tests are run in a conda environment, which can be activated with

cd test
conda env create -f ./test-environment.yml
source activate test-xsimd
cd ..
cmake . -DBUILD_TESTS=ON
make xtest

Building the HTML Documentation

xsimd's documentation is built with three tools

While doxygen must be installed separately, you can install breathe by typing

pip install breathe

Breathe can also be installed with conda

conda install -c conda-forge breathe

Finally, build the documentation with

make html

from the docs subdirectory.

License

We use a shared copyright model that enables all contributors to maintain the copyright on their contributions.

This software is licensed under the BSD-3-Clause license. See the LICENSE file for details.

More Repositories

1

xtensor

C++ tensors with broadcasting and lazy computing
C++
3,282
star
2

xtensor-python

Python bindings for xtensor
C++
345
star
3

xframe

C++ multi-dimensional labeled arrays and dataframe based on xtensor
C++
303
star
4

xtl

The x template library
C++
200
star
5

xtensor-blas

BLAS extension to xtensor
C++
156
star
6

xtensor-r

R bindings for xtensor
C++
87
star
7

xtensor-io

xtensor plugin to read and write images, audio files, numpy (compressed) npz and HDF5
C++
84
star
8

xtensor-fftw

FFTW bindings for the xtensor C++14 multi-dimensional array library
Jupyter Notebook
47
star
9

Xtensor.jl

Julia package for xtensor-julia
Julia
40
star
10

xtensor-zarr

Implementation of the Zarr core protocol (version 2 and 3) based on xtensor.
C++
38
star
11

xtensor-python-cookiecutter

Cookiecutter for a Python project making use of xtensor
Python
31
star
12

xtensor-sparse

C++
30
star
13

zarray

Dynamically typed N-D expression system based on xtensor
C++
25
star
14

xtensor-benchmark

Easy to use benchmarks for linear algebra frameworks
C++
24
star
15

xtensor-julia

Julia bindings for xtensor
C++
19
star
16

Xtensor.R

R package for xtensor-r
C++
17
star
17

xtensor-polyglot

An interactive demo of the xtensor language bindings.
Jupyter Notebook
9
star
18

xtensor-signal

Signal processing features based on xtensor
C++
8
star
19

xtensor-julia-cookiecutter

Cookiecutter for a Julia project making use of xtensor
CMake
7
star
20

xtensor-stack.github.io

Organization and project management for xtensor and related projects https://xtensor-stack.github.io
HTML
2
star
21

xsimd-algorithm

STL-like algorithms vectorized with xsimd
1
star