• Stars
    star
    349
  • Rank 121,528 (Top 3 %)
  • Language
    C++
  • License
    Other
  • Created about 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Arduino LoRa EBYTE E32 device library complete and tested with Arduino, esp8266, esp32, STM32 and Raspberry Pi Pico (rp2040 boards). sx1278/sx1276
Support forum EByte e32 English
Forum supporto EByte e32 italiano

A complete tutorial on my site www.mischianti.org

  1. LoRa E32 device for Arduino, esp32 or esp8266: settings and basic usage
  2. LoRa E32 device for Arduino, esp32 or esp8266: library
  3. LoRa E32 device for Arduino, esp32 or esp8266: configuration
  4. LoRa E32 device for Arduino, esp32 or esp8266: fixed transmission
  5. LoRa E32 device for Arduino, esp32 or esp8266: power saving and sending structured data
  6. LoRa E32 device for Arduino, esp32 or esp8266: WOR (wake on radio) the microcontroller and Arduino shield
  7. LoRa E32 device for Arduino, esp32 or esp8266: WOR (wake on radio) microcontroller and new WeMos D1 mini shield

Changelog

  • 2023-08-10 1.5.13 Add E32_TTL_2W for E32-433T33S Comment
  • 2023-05-02 1.5.12 Fix 900Mhz frequency for E32-900T20D and E32-900T30D Forum
  • 2023-04-18 1.5.11 Distinct frequency from 900MHz and 915Mhz devices Forum
  • 2022-12-14 1.5.10 Fix UART_PARITY for ESP32 C3 Forum fix
  • 2022-12-14 1.5.9 Raspberry Pi Pico test and examples
  • 2022-09-19 1.5.8 Fix stm32 rogerclerk library #48
  • 2022-08-31 1.5.7 Minor Fix and examples update
  • 2022-04-07 1.5.6 Fix support for STM32
  • 2022-03-09 1.5.5 Fix UART baudrate variable and debug println
  • 2021-01-24 1.5.4 Add Arduino Nano BLE support and minor adjustment
  • 2021-12-31 1.5.3 Add support for Arduino SAMD boards

An Arduino UNO shield to simplify the use

Arduino UNO shield

You can order the PCB here

Instruction and assembly video on 6 part of the guide

An WeMos D1 shield to simplify the use

WeMos D1 shield

You can order the PCB here

An ESP32 shield to simplify the use

ESP32 shield

You can order the PCB here

Instruction and assembly video on 6 part of the guide

LoRa E32 (EBYTE LoRa SX1278/SX1276) series Library for Arduino, esp8266 and esp32-

I create a library to manage EBYTE E32 series of LoRa device, very powerfull, simple and cheap device.

LoRa E32-TTL-100

You can find here AliExpress (3Km device) AliExpress (8Km device)

They can work over a distance of 3000m to 8000m, and they have a lot of features and parameter.

So i create this library to simplify the usage.

Please refer to my article to get updated Schema

Library

You can find my library here.

To download.

Click the DOWNLOADS button in the top right corner, rename the uncompressed folder LoRa_E32.

Check that the LoRa_E32 folder contains LoRa_E32.cpp and LoRa_E32.h.

Place the LoRa_E32 library folder your /libraries/ folder.

You may need to create the libraries subfolder if its your first library.

Restart the IDE.

Pinout

E32 TTL 100

You can buy here AliExpress

Pin No. Pin item Pin direction Pin application
1 M0 Input๏ผˆweak pull-up๏ผ‰ Work with M1 & decide the four operating modes.Floating is not allowed, can be ground.
2 M1 Input๏ผˆweak pull-up๏ผ‰ Work with M0 & decide the four operating modes.Floating is not allowed, can be ground.
3 RXD Input TTL UART inputs, connects to external (MCU, PC) TXD outputpin. Can be configured as open-drain or pull-up input.
4 TXD Output TTL UART outputs, connects to external RXD (MCU, PC) inputpin. Can be configured as open-drain or push-pull output
5 AUX Output To indicate moduleโ€™s working status & wakes up the external MCU. During the procedure of self-check initialization, the pin outputs low level. Can be configured as open-drain output orpush-pull output (floating is allowed).
6 VCC Power supply 2.3V~5.5V DC
7 GND Ground As you can see you can set various modes via M0 and M1 pins.
Mode M1 M0 Explanation
Normal 0 0 UART and wireless channel is good to go
Wke-Up 0 1 Same as normal but a preamble code is added to transmitted data for waking-up the receiver.
Power-Saving 1 0 UART is disable and wireless is on WOR(wake on radio) mode which means the device will turn on when there is data to be received. Transmission is not allowed.
Sleep 1 1 Used in setting parameters. Transmitting and receiving disabled.

As you can see there are some pins that can be use in a static way, but If you connect It to the library you gain in performance and you can control all mode via software, but we are going to explain better next.

Fully connected schema

As I already say Itโ€™s not important to connect all pin to the output of microcontroller, you can put M0 and M1 pins to HIGH or LOW to get desidered configuration, and if you donโ€™t connect AUX the library set a reasonable delay to be sure that the operation is complete.

AUX pin

When transmitting data can be used to wake up external MCU and return HIGH on data transfer finish.

LoRa E32 AUX Pin on transmission

When receiving AUX going LOW and return HIGH when buffer is empty.

LoRa e32 AUX pin on reception

Itโ€™s also used for self checking to restore normal operation (on power-on and sleep/program mode).

LoRa e32 AUX pin on self-check

esp8266 connection schema is more simple because It work at the same voltage of logical communications (3.3v).

LoRa E32 TTL 100 Wemos D1 fully connected

Itโ€™s important to add pull-up resistor (4,7Kohm) to get good stability.

M0 D7
M1 D6
RX PIN D2 (PullUP 4,7Kฮฉ)
TX PIN D3 (PullUP 4,7Kฮฉ)
AUX D5 (Input)
3.3v GND

Arduino working voltage is 5v, so we need to add a voltage divider on RX pin M0 and M1 of LoRa module to prevent damage, you can get more information here Voltage divider: calculator and application.

You can use a 2Kohm resistor to GND and 1Kohm from signal than put together on RX.

LoRa E32 TTL 100 Arduino fully connected

M0 7 (Voltage divider)
M1 6 (Voltage divider)
RX PIN D2 (PullUP 4,7Kฮฉ & Voltage divider)
TX PIN D3 (PullUP 4,7Kฮฉ)
AUX 5 (Input)
VCC 3.3v
GND GND

Constructor

I made a set of quite numerous constructors, because we can have more options and situations to manage.

LoRa_E32(byte rxPin, byte txPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

LoRa_E32(byte rxPin, byte txPin, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

LoRa_E32(byte rxPin, byte txPin, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

First set of constructor are create to delegate the manage of Serial and other pins to the library.

  • rxPin and txPin is the pin to connect to UART and they are mandatory.

  • auxPin is a pin that check the operation, transmission and receiving status (we are going to explain better next), that pin It isnโ€™t mandatory, if you donโ€™t set It I apply a delay to permit the operation to complete itself (with latency).

  • m0pin and m1Pin are the pins to change operation MODE (see the table upper), I think this pins in โ€œproductionโ€ are going to connect directly HIGH or LOW, but for test they are usefully to be managed by the library.

  • bpsRate is the boudrate of SoftwareSerial normally is 9600 (the only baud rate in programmin/sleep mode)

A simple example is

#include "LoRa_E32.h"
LoRa_E32 e32ttl100(2, 3); // RX, TX
// LoRa_E32 e32ttl100(2, 3, 5, 6, 7); // RX, TX

We can use directly a SoftwareSerial with another constructor

LoRa_E32(HardwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
LoRa_E32(HardwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
LoRa_E32(HardwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

The example upper with this constructor can be do like so.

#include <SoftwareSerial.h>
#include "LoRa_E32.h"
SoftwareSerial mySerial(2, 3); // RX, TX
LoRa_E32 e32ttl100(mySerial);
// LoRa_E32 e32ttl100(&amp;mySerial, 5, 7, 6);

The last set of constructor is to permit to use an HardwareSerial instead of SoftwareSerial.

LoRa_E32(SoftwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
LoRa_E32(SoftwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
LoRa_E32(SoftwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

Begin

The begin command is used to startup Serial and pins in input and output mode.

void begin();

in execution is

// Startup all pins and UART
e32ttl100.begin();

Configuration and information method

There a set of methods for manage configuration and get information of the device.

ResponseStructContainer getConfiguration();
ResponseStatus setConfiguration(Configuration configuration, PROGRAM_COMMAND saveType = WRITE_CFG_PWR_DWN_LOSE);
ResponseStructContainer getModuleInformation();
void printParameters(struct Configuration configuration);
ResponseStatus resetModule();

Response container

To simplify the manage of response I create a set of container, for me very usefully to manage errors and return generic data.

ResponseStatus

This is a status container and have 2 simple entry point, with this you can get the status code and the description of status code

Serial.println(c.getResponseDescription()); // Description of code
Serial.println(c.code); // 1 if Success

The code are

E32_SUCCESS = 1,
ERR_E32_UNKNOWN,
ERR_E32_NOT_SUPPORT,
ERR_E32_NOT_IMPLEMENT,
ERR_E32_NOT_INITIAL,
ERR_E32_INVALID_PARAM,
ERR_E32_DATA_SIZE_NOT_MATCH,
ERR_E32_BUF_TOO_SMALL,
ERR_E32_TIMEOUT,
ERR_E32_HARDWARE,
ERR_E32_HEAD_NOT_RECOGNIZED
ResponseContainer

This container is created to manage String response and have 2 entry point.

data with the string returned from message and status an instance of RepsonseStatus.

ResponseContainer rs = e32ttl.receiveMessage();
String message = rs.data;
Serial.println(rs.status.getResponseDescription());
Serial.println(message);
ResponseStructContainer

This is the more โ€œcomplexโ€ container, I use this to manage structure, It has the same entry point of ResponseContainer but data is a void pointer to manage complex structure.

ResponseStructContainer c;
c = e32ttl100.getConfiguration();
// It's important get configuration pointer before all other operation
Configuration configuration = *(Configuration*) c.data;
Serial.println(c.status.getResponseDescription());
Serial.println(c.status.code);

getConfiguration and setConfiguration

The first method is getConfiguration, you can use It to retrive all data stored on device.

ResponseStructContainer getConfiguration();

Here an usage example.

ResponseStructContainer c;
c = e32ttl100.getConfiguration();
// It's important get configuration pointer before all other operation
Configuration configuration = *(Configuration*) c.data;
Serial.println(c.status.getResponseDescription());
Serial.println(c.status.code);
Serial.println(configuration.SPED.getUARTBaudRate());

Get configuration

Structure of configuration have all data of settings, and I add a series of function to get all description of single data.

configuration.ADDL = 0x0; // First part of address
configuration.ADDH = 0x1; // Second part of address
configuration.CHAN = 0x19; // Channel
configuration.OPTION.fec = FEC_0_OFF; // Forward error correction switch
configuration.OPTION.fixedTransmission = FT_TRANSPARENT_TRANSMISSION; // Transmission mode
configuration.OPTION.ioDriveMode = IO_D_MODE_PUSH_PULLS_PULL_UPS; // Pull-up management
configuration.OPTION.transmissionPower = POWER_17; // dBm transmission power
configuration.OPTION.wirelessWakeupTime = WAKE_UP_1250; // Wait time for wake up
configuration.SPED.airDataRate = AIR_DATA_RATE_011_48; // Air data rate
configuration.SPED.uartBaudRate = UART_BPS_115200; // Communication baud rate
configuration.SPED.uartParity = MODE_00_8N1; // Parity bit

You have the equivalent function to get all description:

Serial.print(F("Chan : ")); Serial.print(configuration.CHAN, DEC); Serial.print(" -> "); Serial.println(configuration.getChannelDescription());
Serial.println(F(" "));
Serial.print(F("SpeedParityBit : ")); Serial.print(configuration.SPED.uartParity, BIN);Serial.print(" -> "); Serial.println(configuration.SPED.getUARTParityDescription());
Serial.print(F("SpeedUARTDatte : ")); Serial.print(configuration.SPED.uartBaudRate, BIN);Serial.print(" -> "); Serial.println(configuration.SPED.getUARTBaudRate());
Serial.print(F("SpeedAirDataRate : ")); Serial.print(configuration.SPED.airDataRate, BIN);Serial.print(" -> "); Serial.println(configuration.SPED.getAirDataRate());
Serial.print(F("OptionTrans : ")); Serial.print(configuration.OPTION.fixedTransmission, BIN);Serial.print(" -> "); Serial.println(configuration.OPTION.getFixedTransmissionDescription());
Serial.print(F("OptionPullup : ")); Serial.print(configuration.OPTION.ioDriveMode, BIN);Serial.print(" -> "); Serial.println(configuration.OPTION.getIODroveModeDescription());
Serial.print(F("OptionWakeup : ")); Serial.print(configuration.OPTION.wirelessWakeupTime, BIN);Serial.print(" -> "); Serial.println(configuration.OPTION.getWirelessWakeUPTimeDescription());
Serial.print(F("OptionFEC : ")); Serial.print(configuration.OPTION.fec, BIN);Serial.print(" -> "); Serial.println(configuration.OPTION.getFECDescription());
Serial.print(F("OptionPower : ")); Serial.print(configuration.OPTION.transmissionPower, BIN);Serial.print(" -> "); Serial.println(configuration.OPTION.getTransmissionPowerDescription());

At same way setConfiguration want a configuration strucutre, so I think the better way to manage configuration is to retrieve the current one, apply the only change you need and set It again.

ResponseStatus setConfiguration(Configuration configuration, PROGRAM_COMMAND saveType = WRITE_CFG_PWR_DWN_LOSE);

configuration is the strucutre previsiouly show, saveType permit to you to choiche if the change become permanently of only for the current session.

ResponseStructContainer c;
c = e32ttl100.getConfiguration();
// It's important get configuration pointer before all other operation
Configuration configuration = *(Configuration*) c.data;
Serial.println(c.status.getResponseDescription());
Serial.println(c.status.code);
printParameters(configuration);
configuration.ADDL = 0x0;
configuration.ADDH = 0x1;
configuration.CHAN = 0x19;
configuration.OPTION.fec = FEC_0_OFF;
configuration.OPTION.fixedTransmission = FT_TRANSPARENT_TRANSMISSION;
configuration.OPTION.ioDriveMode = IO_D_MODE_PUSH_PULLS_PULL_UPS;
configuration.OPTION.transmissionPower = POWER_17;
configuration.OPTION.wirelessWakeupTime = WAKE_UP_1250;
configuration.SPED.airDataRate = AIR_DATA_RATE_011_48;
configuration.SPED.uartBaudRate = UART_BPS_115200;
configuration.SPED.uartParity = MODE_00_8N1;
// Set configuration changed and set to not hold the configuration
ResponseStatus rs = e32ttl100.setConfiguration(configuration, WRITE_CFG_PWR_DWN_LOSE);
Serial.println(rs.getResponseDescription());
Serial.println(rs.code);
printParameters(configuration);

The parameter all all managed as constant:

Basic configuration option

ADDH High address byte of module (the default 00H) 00H-FFH
ADDL Low address byte of module (the default 00H) 00H-FFH
SPED Information about data rate parity bit and Air data rate CHAN
Communication channel๏ผˆ410M + CHAN*1M๏ผ‰, default 17H (433MHz), valid only for 433MHz device 00H-1FH

OPTION

Type of transmission, pull-up settings, wake-up time, FEC, Transmission power

SPED detail

UART Parity bit: _UART mode can be different between communication parties

|7|6|UART parity bit|Const value| |---|---|---|---|---| |0|0|8N1 (default)|MODE_00_8N1| |0|1|8O1|MODE_01_8O1| |1|0|8 E1|MODE_10_8E1| |1|1|8N1 (equal to 00)|MODE_11_8N1|

UART baud rate: UART baud rate can be different between communication parties, The UART baud rate has nothing to do with wireless transmission parameters & wonโ€™t affect the wireless transmit / receive features.

5 43 TTL UART baud rate๏ผˆbps๏ผ‰ Constant value
0 0 0 1200
0 0 1 2400
0 1 0 4800
0 1 1 9600 (default)
1 0 0 19200
1 0 1 38400
1 1 0 57600
1 1 1 115200

Air data rate: The lower the air data rate, the longer the transmitting distance, better anti- interference performance and longer transmitting time, The air data rate must keep the same for both communication parties.

2 1 0 Air data rate๏ผˆbps๏ผ‰ Constant value
0 0 0 0.3k AIR_DATA_RATE_000_03
0 0 1 1.2k AIR_DATA_RATE_001_12
0 1 0 2.4k (default) AIR_DATA_RATE_010_24
0 1 1 4.8k AIR_DATA_RATE_011_48
1 0 0 9.6k AIR_DATA_RATE_100_96
1 0 1 19.2k AIR_DATA_RATE_101_192
1 1 0 19.2k (same to 101) AIR_DATA_RATE_110_192
1 1 1 19.2k (same to 101) AIR_DATA_RATE_111_192

OPTION detail

Transmission mode: in fixed transmission mode, the first three bytes of each userโ€™s data frame can be used as high/low address and channel. The module changes its address and channel when transmit. And it will revert to original setting after complete the process.

7 Fixed transmission enabling bit๏ผˆsimilar to MODBUS๏ผ‰ Constant value
0 Transparent transmission mode FT_TRANSPARENT_TRANSMISSION
1 Fixed transmission mode FT_FIXED_TRANSMISSION

IO drive mode: this bit is used to the module internal pull- up resistor. It also increases the levelโ€™s adaptability in case of open drain. But in some cases, it may need external pull-up
resistor.

6 IO drive mode ( default 1) Constant value
1 TXD and AUX push-pull outputs, RXD pull-up inputs IO_D_MODE_PUSH_PULLS_PULL_UPS
0 TXDใ€AUX open-collector outputs, RXD open-collector inputs IO_D_MODE_OPEN_COLLECTOR

Wireless wake-up time: the transmit & receive module work in mode 0, whose delay time is invalid & can be arbitrary value, The transmitter works in mode 1 can transmit the preamble code of the corresponding time continuously, when the receiver works in mode 2, the time means the monitor interval time (wireless wake-up). Only the data from transmitter that works in mode 1 can be
received.

5 4 3 wireless wake-up time Constant value
0 0 0 250ms (default) WAKE_UP_250
0 0 1 500ms WAKE_UP_500
0 1 0 750ms WAKE_UP_750
0 1 1 1000ms WAKE_UP_1000
1 0 0 1250ms WAKE_UP_1250
1 0 1 1500ms WAKE_UP_1500
1 1 0 1750ms WAKE_UP_1750
1 1 1 2000ms WAKE_UP_2000

FEC: after turn off FEC, the actual data transmission rate increases while anti- interference ability decreases. Also the transmission distance is relatively short, both communication parties must keep on the same pages about turn-on or turn-off FEC.

2 FEC switch Constant value
0 Turn off FEC FEC_0_OFF
1 Turn on FEC (default) FEC_1_ON

Transmission power

You can change this set of constant by apply a define like so:

#define E32_TTL_100 // default value without set

Applicable for E32-TTL-100, E32-TTL-100S1, E32-T100S2.
The external power must make sure the ability of current output more than 250mA and ensure the power supply ripple within 100mV.
Low power transmission is not recommended due to its low power supply
efficiency.

#define E32_TTL_100 // default value without set
1 0 Transmission power (approximation) Constant value
0 0 20dBm (default) POWER_20
0 1 17dBm POWER_17
1 0 14dBm POWER_14
1 1 10dBm POWER_10

Applicable for E32-TTL-500ใ€‚
The external power must make sure the ability of current output more than 700mA and ensure the power supply ripple within 100mV.
Low power transmission is not recommended due to its low power supply efficiency.

#define E32_TTL_500
1 0 Transmission power (approximation) Constant value
0 0 27dBm (default) POWER_27
0 1 24dBm POWER_24
1 0 21dBm POWER_21
1 1 18dBm POWER_18

Applicable for E32-TTL-1W, E32 (433T30S), E32 (868T30S), E32 (915T30S)
The external power must make sure the ability of current output more than 1A and ensure the power supply ripple within 100mV.
Low power transmission is not recommended due to its low power supply
efficiency.

#define E32_TTL_1W
1 0 Transmission power (approximation) Constant value
0 0 30dBm (default) POWER_30
0 1 27dBm POWER_27
1 0 24dBm POWER_24
1 1 21dBm POWER_21

You can configure Channel frequency olso with this define:

// One of

#define FREQUENCY_433
#define FREQUENCY_170
#define FREQUENCY_470
#define FREQUENCY_868
#define FREQUENCY_915

Send receive message

First we must introduce a simple but usefully method to check if something is in the receiving buffer

int available();

Itโ€™s simply return how many bytes you have in the current stream.

Normal transmission mode

Normal/Transparent transmission mode is used to send messages to all device with same address and channel.

LoRa E32 transmitting scenarios, lines are channels

There are a lot of method to send/receive message, we are going to explain in detail:

ResponseStatus sendMessage(const String message);
ResponseContainer receiveMessage();

First method is sendMessage and is used to send a String to a device in Normal mode.

ResponseStatus rs = e32ttl.sendMessage("Prova");
Serial.println(rs.getResponseDescription());

The other device simply do on the loop

if (e32ttl.available() > 1){
ResponseContainer rs = e32ttl.receiveMessage();
String message = rs.data;` `// First ever get the data
Serial.println(rs.status.getResponseDescription());
Serial.println(message);
}

Manage structure

If you want send a complex strucuture you can use this method

ResponseStatus sendMessage(const void *message, const uint8_t size);

ResponseStructContainer receiveMessage(const uint8_t size);

Itโ€™s used to send strucutre, for example:

struct Messaggione {

char type[5];

char message[8];

bool mitico;

};

struct Messaggione messaggione = {"TEMP", "Peple", true};

ResponseStatus rs = e32ttl.sendMessage(&amp;messaggione, sizeof(Messaggione));

Serial.println(rs.getResponseDescription());

and the other side you can receive the message so

ResponseStructContainer rsc = e32ttl.receiveMessage(sizeof(Messaggione));

struct Messaggione messaggione = *(Messaggione*) rsc.data;

Serial.println(messaggione.message);

Serial.println(messaggione.mitico);
Read partial strucure

If you want read first part of the message to manage more type of strucutre you can use this method.

ResponseContainer receiveInitialMessage(const uint8_t size);

I create It to receive a string with type or other to identify the strucuture to load.

struct Messaggione { // Partial strucutre without type

char message[8];

bool mitico;

};

char type[5]; // first part of structure

ResponseContainer rs = e32ttl.receiveInitialMessage(sizeof(type));

// Put string in a char array (not needed)

memcpy ( type, rs.data.c_str(), sizeof(type) );

Serial.println("READ TYPE: ");

Serial.println(rs.status.getResponseDescription());

Serial.println(type);

// Read the rest of structure

ResponseStructContainer rsc = e32ttl.receiveMessage(sizeof(Messaggione));

struct Messaggione messaggione = *(Messaggione*) rsc.data;

Fixed mode instead of normal mode

At same manner I create a set of method to use with fixed transmission

Fixed transmission

You need to change only the sending method, because the destination device donโ€™t receive the preamble with Address and Channel.

So for String message you have

ResponseStatus sendFixedMessage(byte ADDL, byte ADDH, byte CHAN, const String message);

ResponseStatus sendBroadcastFixedMessage(byte CHAN, const String message);

and for structure you have

ResponseStatus sendFixedMessage(byte ADDL, byte ADDH, byte CHAN, const void *message, const uint8_t size);

ResponseStatus sendBroadcastFixedMessage(byte CHAN, const void *message, const uint8_t size );

Here a simple example

ResponseStatus rs = e32ttl.sendFixedMessage(0, 0, 0x17, &amp;messaggione, sizeof(Messaggione));

// ResponseStatus rs = e32ttl.sendFixedMessage(0, 0, 0x17, "Ciao");

Fixed transmission have more scenarios

LoRa E32 transmitting scenarios, lines are channels

If you send to a specific device (second scenarios Fixed transmission) you must add ADDL, ADDH and CHAN to identify It directly.

ResponseStatus rs = e32ttl.sendFixedMessage(2, 2, 0x17, "Message to a device");

If you want send a message to all device in a specified Channel you can use this method.

ResponseStatus rs = e32ttl.sendBroadcastFixedMessage(0x17, "Message to a devices of a channel");

If you want receive all broadcast message in the network you must set your ADDH and ADDL with BROADCAST_ADDRESS.

ResponseStructContainer c;

c = e32ttl100.getConfiguration();

// It's important get configuration pointer before all other operation

Configuration configuration = *(Configuration*) c.data;

Serial.println(c.status.getResponseDescription());

Serial.println(c.status.code);

printParameters(configuration);

configuration.ADDL = BROADCAST_ADDRESS;

configuration.ADDH = BROADCAST_ADDRESS;

// Set configuration changed and set to not hold the configuration

ResponseStatus rs = e32ttl100.setConfiguration(configuration, WRITE_CFG_PWR_DWN_LOSE);

Serial.println(rs.getResponseDescription());

Serial.println(rs.code);

printParameters(configuration);

Thanks

More Repositories

1

PCF8574_library

PCF8574 library. i2c digital expander for Arduino, Raspberry Pi Pico and rp2040 boards, esp32, SMT32 and ESP8266. Can read write digital values with only 2 wire. Very simple to use and encoder support.
C++
209
star
2

SimpleFTPServer

A simple FTP server for Arduino, ArduinoSAMD WiFiNINA, esp8266, esp32, stm32 and Raspberry Pi Pico W
C++
131
star
3

EByte_LoRa_E22_Series_Library

Arduino LoRa EBYTE E22 device library complete and tested with Arduino, esp8266, esp32, STM32 and Raspberry Pi Pico (rp2040 boards).. sx1262/sx1268
C++
101
star
4

EByte_LoRa_E220_Series_Library

Arduino LoRa EBYTE E220 LLCC68 device library complete and tested with Arduino, esp8266, esp32, STM32 and Raspberry Pi Pico (rp2040 boards)..
C++
83
star
5

EMailSender

Arduino, esp32, Esp8266 EMailSender with Arduino IDE, simple library to send email via smtp with attachments.
C++
74
star
6

MKS_WIFI_upgrade_with_BeePrint_web_interface

Firmware for MKS WiFi module from Makerbase with BeePrint Web Interface, tested with Flying Bear Ghost 4/5/6 Reborn Flsun
G-code
69
star
7

PCF8575_library

i2c 16bits digital expander with i2c digital expander for Arduino, Raspberry Pi Pico and rp2040 boards, esp32, SMT32 and ESP8266. Can read write digital values with only 2 wire. Very simple and encoder support. Uncommet NOT_SEQUENTIAL_PINOUT define to have pins like datasheet and not sequential one.
C++
49
star
8

ABB_Aurora_Solar_Inverter_Library

Arduino, esp32 and esp8266 library for ABB (ex PowerOne) Aurora Inverter, implement a full methods to retrieve data from the Inverter via RS-485
C
28
star
9

PCF8591_library

Library to use pcf8591 i2c analog IC with Arduino, Raspberry Pi Pico and rp2040 boards, esp32, SMT32 and ESP8266. Can read analog value and write analog value with only 2 wire.
C++
27
star
10

DHT12_sensor_library

DHT12 complete library (Original DHT clone library with same command and some addiction). I2c and OneWire support, connection schema of Arduino UNO, esp32 and esp8266 with examples.
C++
24
star
11

BatteryCapacityTesterArduinoNANO

Battery tester with arduino, with thermistor to check temperature of power resistance and battery. On version 0.2 now It's possible to select a battery type.
C++
22
star
12

FileToArray

A simple tool used in esp32-cam also, that convert a file in an array to use programmatically, for Arduino esp8266 and esp32
C
17
star
13

EByte_LoRa_E220_micropython_library

MicroPython LoRa EBYTE E220 LLCC68 device library complete and tested with Arduino, esp8266, esp32, STM32 and Raspberry Pi Pico (rp2040 boards).
Python
17
star
14

ArduinoOTA_reusable_custom_web_page

Arduino OTA: simple and beautiful reusable custom web page with progress and theme
HTML
16
star
15

Aurora_Web_Invert_Monitor

Here a full Web application hosted in a esp8266 to retrieve and manage production data of the solar inverter ABB (ex Power One now Fimer) Aurora.
C++
14
star
16

WebServer-Esp8266-ESP32-Tutorial

Some examples from my little tutorial to learn how to manage a complete web server via esp8266 esp32 or other arduino like device.
CSS
11
star
17

EByte-LoRa-Manager-React-Redux-Web-Front-End

The front end for EByte Lora E32 E22 devices. (React, TypeScript, Redux, Redux Logic, WebSocket)
TypeScript
10
star
18

ATtinyProgrammerBoardArduinoAsISP

ATtiny programmer board for use ArduinoUNO as ISP
HTML
9
star
19

EByte_LoRa_E22_python_raspberrypi_library

RaspberryPi LoRa EBYTE E22 device library complete and tested. sx1262/sx1268
Python
8
star
20

Thermistor_library

Thermistor very simple but complete and configurable library for thermistor.
C++
8
star
21

EByte_LoRa_E22_micropython_library

MicroPython LoRa EBYTE E22 device library complete and tested with Arduino SAMD, esp8266, esp32, Raspberry, rp2040 and STM32. sx1262/sx1268
Python
8
star
22

beeprint_3d_printer_web_interface

The BeePrint web interface was created as Web View of MKS WiFi custom firmware. Developed in React Redux (ReduxLogic)
JavaScript
8
star
23

FlyingBear-Ghost-5-enclosure-cover-3D-printed

Here my STL 3D printing file to make the Flyingbear Ghost 5 enclousure
7
star
24

esp32-cam_camera_webserver_enhanced

Firmware for esp32-cam to make the most of it with BeePrint for MKS WiFi
C
7
star
25

WebSocket-Esp8266-ESP32-Tutorial

Here the code of the tutorial with esp32 and esp8266 about Web-socket management
C++
6
star
26

3D-printed-socket-and-adapter-for-microcontroller

3D printed socket to put on breadboard or create a PCB for microcontroller like esp8266 or esp32
6
star
27

EByte_LoRa_E32_micropython_library

This library implements the EBYTE LoRa E32 Series for MicroPython.
Python
6
star
28

EByte_RF_E70_Series_Library

Arduino RF EBYTE E70 CC1310 device library complete and tested with Arduino, esp8266, esp32, STM32 and Raspberry Pi Pico (rp2040 boards)..
C++
5
star
29

EByte-LoRa-Manager-esp8266-Gateway

A simple LoRa gateway that put all received message in a web socket server, with a complete web-based configuration interface.
C++
5
star
30

EByte_LoRa_E220_python_raspberrypi_library

Python
5
star
31

PCF8574_micropython_library

MicroPython library for pcf8574 an i2c digital expander for Arduino, esp32, SMT32 and ESP8266. Can read write digital values with only 2 wire.
Python
5
star
32

LoRa-refill-and-water-level-tank-Master

Here the server part of LoRa water level control: with this part you can control the pump and with OLED display you can chose the action, the client part check the level of the tank.
C
5
star
33

JS-Vanilla-and-React-temperature-humidity

JavaScript
4
star
34

EByte_LoRa_E32_python_raspberrypi_library

Raspberry Pi LoRa EBYTE E32 device library complete and tested. sx1278/sx1276
Python
4
star
35

3DPrintingFiles

4
star
36

ArduinoCNCSchieldControl

A simple program to control CNC Shield to calculate step per millimeter and move/test axis movement
Makefile
4
star
37

alexa-skill-manage-relay-nodejs

Code for tutorial "AWS Alexa Smart Home Skill"
C++
3
star
38

3D-Printed-modular-arm-and-components

3D Printed modular arm and components: various components to be put together to compose various structures and objects
3
star
39

LoRa-refill-and-water-level-tank-Client

Here the client part of LoRa water level control: with this part you check the level of the tank and send the status to the client.
C++
3
star
40

EByte_LoRa_E32_circuitpython_library

This library implements the EBYTE LoRa E32 Series for CircuitPython.
Python
2
star
41

dynamodb-tutorial-examples-iot

Here my set of examples on DynamoDB with Amazon AWS JavaScript SDK v2 and v3
JavaScript
2
star
42

EByte_LoRa_E220_circuitpython_library

CircuitPython LoRa EBYTE E220 LLCC68 device library complete and tested with Arduino, esp8266, esp32, STM32 and Raspberry Pi Pico (rp2040 boards).
Python
2
star
43

PCF8591_micropython_library

MicroPython Library to use pcf8591 i2c analog IC with Arduino, Raspberry Pi Pico and rp2040 boards, esp32, SMT32 and ESP8266. Can read analog value and write analog value with only 2 wire.
Python
2
star
44

Generic-3D-printed-components

A collection of 3D printed components used in a lot of projects.
1
star
45

xreef

Hi, I'm Renzo Mischianti, come and visit me on my blog www.mischianti.org
1
star
46

EByte-LoRa-Manager-esp32-Gateway

A simple LoRa gateway that put all received message in a web socket server, with a complete web-based configuration interface.
C++
1
star
47

WormRedo

Simple pure java worm games.
Java
1
star
48

CNC-Cyclone-PCB-factotory-upgrade

1
star