• Stars
    star
    5,914
  • Rank 6,832 (Top 0.2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created about 6 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [πŸš€ BasicSR] [Real-ESRGAN]

✨ New Updates.

We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for real-world image restoration. For example, it can also remove annoying JPEG compression artifacts.
You are recommended to have a try πŸ˜ƒ

In the Real-ESRGAN repo,

  • You can still use the original ESRGAN model or your re-trained ESRGAN model. The model zoo in Real-ESRGAN.
  • We provide a more handy inference script, which supports 1) tile inference; 2) images with alpha channel; 3) gray images; 4) 16-bit images.
  • We also provide a Windows executable file RealESRGAN-ncnn-vulkan for easier use without installing the environment. This executable file also includes the original ESRGAN model.
  • The full training codes are also released in the Real-ESRGAN repo.

Welcome to open issues or open discussions in the Real-ESRGAN repo.

  • If you have any question, you can open an issue in the Real-ESRGAN repo.
  • If you have any good ideas or demands, please open an issue/discussion in the Real-ESRGAN repo to let me know.
  • If you have some images that Real-ESRGAN could not well restored, please also open an issue/discussion in the Real-ESRGAN repo. I will record it (but I cannot guarantee to resolve itπŸ˜›).

Here are some examples for Real-ESRGAN:

πŸ“– Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

[Paper]
Xintao Wang, Liangbin Xie, Chao Dong, Ying Shan
Applied Research Center (ARC), Tencent PCG
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences


As there may be some repos have dependency on this ESRGAN repo, we will not modify this ESRGAN repo (especially the codes).

The following is the original README:

The training codes are in πŸš€ BasicSR. This repo only provides simple testing codes, pretrained models and the network interpolation demo.

BasicSR is an open source image and video super-resolution toolbox based on PyTorch (will extend to more restoration tasks in the future).
It includes methods such as EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, etc. It now also supports StyleGAN2.

Enhanced Super-Resolution Generative Adversarial Networks

By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, Chen Change Loy

We won the first place in PIRM2018-SR competition (region 3) and got the best perceptual index. The paper is accepted to ECCV2018 PIRM Workshop.

🚩 Add Frequently Asked Questions.

For instance,

  1. How to reproduce your results in the PIRM18-SR Challenge (with low perceptual index)?
  2. How do you get the perceptual index in your ESRGAN paper?

BibTeX

@InProceedings{wang2018esrgan,
    author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
    title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
    booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
    month = {September},
    year = {2018}
}

The RRDB_PSNR PSNR_oriented model trained with DF2K dataset (a merged dataset with DIV2K and Flickr2K (proposed in EDSR)) is also able to achive high PSNR performance.

Method Training dataset Set5 Set14 BSD100 Urban100 Manga109
SRCNN 291 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
EDSR DIV2K 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
RCAN DIV2K 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/ 0.8087 31.22/ 0.9173
RRDB(ours) DF2K 32.73/0.9011 28.99/0.7917 27.85/0.7455 27.03/0.8153 31.66/0.9196

Quick Test

Dependencies

  • Python 3
  • PyTorch >= 1.0 (CUDA version >= 7.5 if installing with CUDA. More details)
  • Python packages: pip install numpy opencv-python

Test models

  1. Clone this github repo.
git clone https://github.com/xinntao/ESRGAN
cd ESRGAN
  1. Place your own low-resolution images in ./LR folder. (There are two sample images - baboon and comic).
  2. Download pretrained models from Google Drive or Baidu Drive. Place the models in ./models. We provide two models with high perceptual quality and high PSNR performance (see model list).
  3. Run test. We provide ESRGAN model and RRDB_PSNR model and you can config in the test.py.
python test.py
  1. The results are in ./results folder.

Network interpolation demo

You can interpolate the RRDB_ESRGAN and RRDB_PSNR models with alpha in [0, 1].

  1. Run python net_interp.py 0.8, where 0.8 is the interpolation parameter and you can change it to any value in [0,1].
  2. Run python test.py models/interp_08.pth, where models/interp_08.pth is the model path.

Perceptual-driven SR Results

You can download all the resutls from Google Drive. (βœ”οΈ included; βž– not included; β­• TODO)

HR images can be downloaed from BasicSR-Datasets.

Datasets LR ESRGAN SRGAN EnhanceNet CX
Set5 βœ”οΈ βœ”οΈ βœ”οΈ βœ”οΈ β­•
Set14 βœ”οΈ βœ”οΈ βœ”οΈ βœ”οΈ β­•
BSDS100 βœ”οΈ βœ”οΈ βœ”οΈ βœ”οΈ β­•
PIRM
(val, test)
βœ”οΈ βœ”οΈ βž– βœ”οΈ βœ”οΈ
OST300 βœ”οΈ βœ”οΈ βž– βœ”οΈ β­•
urban100 βœ”οΈ βœ”οΈ βž– βœ”οΈ β­•
DIV2K
(val, test)
βœ”οΈ βœ”οΈ βž– βœ”οΈ β­•

ESRGAN

We improve the SRGAN from three aspects:

  1. adopt a deeper model using Residual-in-Residual Dense Block (RRDB) without batch normalization layers.
  2. employ Relativistic average GAN instead of the vanilla GAN.
  3. improve the perceptual loss by using the features before activation.

In contrast to SRGAN, which claimed that deeper models are increasingly difficult to train, our deeper ESRGAN model shows its superior performance with easy training.

Network Interpolation

We propose the network interpolation strategy to balance the visual quality and PSNR.

We show the smooth animation with the interpolation parameters changing from 0 to 1. Interestingly, it is observed that the network interpolation strategy provides a smooth control of the RRDB_PSNR model and the fine-tuned ESRGAN model.

Β  Β 

Qualitative Results

PSNR (evaluated on the Y channel) and the perceptual index used in the PIRM-SR challenge are also provided for reference.

Ablation Study

Overall visual comparisons for showing the effects of each component in ESRGAN. Each column represents a model with its configurations in the top. The red sign indicates the main improvement compared with the previous model.

BN artifacts

We empirically observe that BN layers tend to bring artifacts. These artifacts, namely BN artifacts, occasionally appear among iterations and different settings, violating the needs for a stable performance over training. We find that the network depth, BN position, training dataset and training loss have impact on the occurrence of BN artifacts.

Useful techniques to train a very deep network

We find that residual scaling and smaller initialization can help to train a very deep network. More details are in the Supplementary File attached in our paper.

The influence of training patch size

We observe that training a deeper network benefits from a larger patch size. Moreover, the deeper model achieves more improvement (∼0.12dB) than the shallower one (∼0.04dB) since larger model capacity is capable of taking full advantage of larger training patch size. (Evaluated on Set5 dataset with RGB channels.)

More Repositories

1

Real-ESRGAN

Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.
Python
27,474
star
2

BasicSR

Open Source Image and Video Restoration Toolbox for Super-resolution, Denoise, Deblurring, etc. Currently, it includes EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR, BasicVSR, SwinIR, ECBSR, etc. Also support StyleGAN2, DFDNet.
Python
3,230
star
3

EDVR

Winning Solution in NTIRE19 Challenges on Video Restoration and Enhancement (CVPR19 Workshops) - Video Restoration with Enhanced Deformable Convolutional Networks. EDVR has been merged into BasicSR and this repo is a mirror of BasicSR.
Python
1,488
star
4

Real-ESRGAN-ncnn-vulkan

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
C
1,440
star
5

facexlib

FaceXlib aims at providing ready-to-use face-related functions based on current STOA open-source methods.
Python
800
star
6

SFTGAN

CVPR18 - Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
Lua
558
star
7

HandyView

Handy image viewer based on PyQt5. Convenient for viewing and comparing :-)
Python
550
star
8

BasicSR-examples

BasicSR-Examples illustrates how to easily use BasicSR in your own project
Python
203
star
9

ProjectTemplate-Python

Python Project Template
Python
189
star
10

HandyFigure

HandyFigure provides the sources file (ususally PPT files) for paper figures
JavaScript
152
star
11

DNI

CVPR19 - Deep Network Interpolation for Continuous Imagery Effect Transition
118
star
12

open-docs

Doc sources for the Open Video Restoration and My Records in
Python
28
star
13

HandyLatex

Collections of Beautiful Latex Snippets
Python
16
star
14

matlab_functions_verification

Python
12
star
15

records

Records in gitbook
HTML
9
star
16

HandyCrawler

Python
8
star
17

xinntao.github.io

Home Page
JavaScript
7
star
18

xinntao

7
star
19

HandyInfer

Python
6
star
20

Real-ESRGAN-replicate

Python
6
star
21

HandyWriting

4
star
22

open-figures

Python
2
star
23

gitbook-plugin-theme-coolx

CSS
2
star
24

test_sync

Shell
2
star
25

public-figures

Store figures used in other public GitHub repositories
2
star
26

basictools

Some basic tools, like drawing, processing files and etc.
Lua
1
star
27

notes

1
star
28

public_figures

1
star
29

configurations

Vim Script
1
star