• Stars
    star
    162
  • Rank 232,284 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated over 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

(CVPR2018) Adversarial Complementary Learning for Weakly Supervised Object Localization

Adversarial Complementary Learning for Weakly Supervised Object Localization

Revisiting CAM

We prove the CAM method can be simplified to enable end-to-end training. The proof refers to Section 3.1.

The proposed ACoL method

We apply two classifiers to discover complementary regions of target objects.

Localization

Effect of mining complementary regions

Prerequisites

  • Python2.7
  • PyTorch
  • tqdm

Data Preparation

  • Download the ILSVRC dataset and save them to $data$

Train

git clone https://github.com/xiaomengyc/ACoL.git
cd ACoL
mkdir snapshots
cd scripts
bash train_vgg_imagenet.sh

Citation

If you find this code helpful, please consider to cite this paper:

@inproceedings{zhang2018adversarial,
  title={Adversarial complementary learning for weakly supervised object localization},
  author={Zhang, Xiaolin and Wei, Yunchao and Feng, Jiashi and Yang, Yi and Huang, Thomas},
  booktitle={IEEE CVPR},
  year={2018}
}