• Stars
    star
    157
  • Rank 238,399 (Top 5 %)
  • Language
    C++
  • License
    Do What The F*ck ...
  • Created about 6 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Darknet2ncnn converts the darknet model to the ncnn model

darknet2ncnn

Introduction

Darknet2ncnn converts the darknet model to the ncnn model, enabling rapid deployment of the darknet network model on the mobile device.

Gitee : https://gitee.com/damone/darknet2ncnn

  1. Support network layers except local/xor conv, rnn, lstm, gru, crnn and iseg
  2. Added all activation operations not directly supported by ncnn, implemented in the layer DarknetActivation
  3. Added the implementation of the shortcut layer, implemented in the layer DarknetShortCut
  4. Added yolo layer and detection layer implementation, support YOLOV1 and YOLOV3
  5. Provides a converted model verification tool, convert_verify, which supports checking the calculation output of each layer of the network, supports convolutional layer parameter checking, and facilitates rapid positioning of problems in model conversion.

NCNN, merged darknet layers https://github.com/xiangweizeng/ncnn

Technical communication QQ group

点击链接加入群聊【darknet2ncnn】:https://jq.qq.com/?_wv=1027&k=5Gou5zw

Install&Usage

  1. Install opencv-dev, gcc, g++, make, cmake

  2. Download source

git clone https://github.com/xiangweizeng/darknet2ncnn.git
  1. Init submodule
cd darknet2ncnn
git submodule init
git submodule update
  1. build darknet
cd darknet
make -j8
rm libdarknet.so
  1. build ncnn
# workspace darknet2ncnn
cd ncnn
mkdir build
cd build
cmake ..
make -j8
make install
cd ../../
  1. Build darknet2ncnn , convert_verify and libdarknet2ncnn.a
# workspace darknet2ncnn
make -j8
  1. Convert and verify
  • Cifar
# workspace darknet2ncnn
make cifar
./darknet2ncnn data/cifar.cfg  data/cifar.backup example/zoo/cifar.param  example/zoo/cifar.bin 
layer     filters    size              input                output
    0 conv    128  3 x 3 / 1    28 x  28 x   3   ->    28 x  28 x 128  0.005 BFLOPs
    1 conv    128  3 x 3 / 1    28 x  28 x 128   ->    28 x  28 x 128  0.231 BFLOPs
.
.
.
   13 dropout       p = 0.50               25088  ->  25088
   14 conv     10  1 x 1 / 1     7 x   7 x 512   ->     7 x   7 x  10  0.001 BFLOPs
   15 avg                        7 x   7 x  10   ->    10
   16 softmax                                          10
Loading weights from data/cifar.backup...Done!
./convert_verify data/cifar.cfg  data/cifar.backup example/zoo/cifar.param  example/zoo/cifar.bin  example/data/21263_ship.png
layer     filters    size              input                output
    0 conv    128  3 x 3 / 1    28 x  28 x   3   ->    28 x  28 x 128  0.005 BFLOPs
    1 conv    128  3 x 3 / 1    28 x  28 x 128   ->    28 x  28 x 128  0.231 BFLOPs
.
.
.
   13 dropout       p = 0.50               25088  ->  25088
   14 conv     10  1 x 1 / 1     7 x   7 x 512   ->     7 x   7 x  10  0.001 BFLOPs
   15 avg                        7 x   7 x  10   ->    10
   16 softmax                                          10
Loading weights from data/cifar.backup...Done!

Start run all operation:
conv_0 : weights diff : 0.000000
conv_0_batch_norm : slope diff : 0.000000
conv_0_batch_norm : mean diff : 0.000000
conv_0_batch_norm : variance diff : 0.000000
conv_0_batch_norm : biases diff : 0.000000
Layer: 0, Blob : conv_0_activation, Total Diff 595.703918 Avg Diff: 0.005936
.
.
.
Layer: 14, Blob : conv_14_activation, Total Diff 35.058342 Avg Diff: 0.071548
Layer: 15, Blob : gloabl_avg_pool_15, Total Diff 0.235242 Avg Diff: 0.023524
Layer: 16, Blob : softmax_16, Total Diff 0.000001 Avg Diff: 0.000000
  • Yolov3-tiny
 make yolov3-tiny.net 
./darknet2ncnn data/yolov3-tiny.cfg  data/yolov3-tiny.weights example/zoo/yolov3-tiny.param  example/zoo/yolov3-tiny.bin 
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
.
.
.
   22 conv    255  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 255  0.088 BFLOPs
   23 yolo
Loading weights from data/yolov3-tiny.weights...Done!
./convert_verify data/yolov3-tiny.cfg  data/yolov3-tiny.weights example/zoo/yolov3-tiny.param  example/zoo/yolov3-tiny.bin example/data/dog.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
.
.
.
   20 route  19 8
   21 conv    256  3 x 3 / 1    26 x  26 x 384   ->    26 x  26 x 256  1.196 BFLOPs
   22 conv    255  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 255  0.088 BFLOPs
   23 yolo
Loading weights from data/yolov3-tiny.weights...Done!

Start run all operation:
conv_0 : weights diff : 0.000000
conv_0_batch_norm : slope diff : 0.000000
conv_0_batch_norm : mean diff : 0.000000
conv_0_batch_norm : variance diff : 0.000000
conv_0_batch_norm : biases diff : 0.000000
.
.
.
conv_22 : weights diff : 0.000000
conv_22 : biases diff : 0.000000
Layer: 22, Blob : conv_22_activation, Total Diff 29411.240234 Avg Diff: 0.170619
  1. Build example
# workspace darknet2ncnn
cd example
make -j2
  1. Run classifier
# workspace example
make cifar.cifar
./classifier zoo/cifar.param  zoo/cifar.bin  data/32516_dog.png data/cifar_lable.txt
4    deer                             = 0.263103
6    frog                             = 0.224274
5    dog                              = 0.191360
3    cat                              = 0.180164
2    bird                             = 0.094251
  1. Run Yolo
  • Run YoloV3-tiny
# workspace example
 make yolov3-tiny.coco
 ./yolo zoo/yolov3-tiny.param  zoo/yolov3-tiny.bin  data/dog.jpg  data/coco.names
3  [car             ] = 0.64929 at 252.10 92.13 114.88 x 52.98
2  [bicycle         ] = 0.60786 at 111.18 134.81 201.40 x 160.01
17 [dog             ] = 0.56338 at 69.91 152.89 130.30 x 179.04
8  [truck           ] = 0.54883 at 288.70 103.80 47.98 x 34.17
3  [car             ] = 0.28332 at 274.47 100.36 48.90 x 35.03
  • YoloV3-tiny figure

NCNN:

image/

DARKNET:

image/

  1. Build benchmark
# workspace darknet2ncnn
cd benchmark
make 
  1. Run benchmark
  • Firefly RK3399 thread2
firefly@firefly:~/project/darknet2ncnn/benchmark$ ./benchdarknet 10  2 &
[1] 4556
loop_count = 10
num_threads = 2
powersave = 0
firefly@firefly:~/project/darknet2ncnn/benchmark$ taskset -pc 4,5 4556
pid 4556's current affinity list: 0-5
pid 4556's new affinity list: 4,5         
           cifar  min =   85.09  max =   89.15  avg =   85.81
         alexnet  min =  218.38  max =  220.96  avg =  218.88
         darknet  min =   88.38  max =   88.95  avg =   88.63
       darknet19  min =  330.55  max =  337.12  avg =  333.64
       darknet53  min =  874.69  max =  920.99  avg =  897.19
     densenet201  min =  678.99  max =  684.97  avg =  681.38
      extraction  min =  332.78  max =  340.54  avg =  334.98
        resnet18  min =  238.93  max =  245.66  avg =  240.32
        resnet34  min =  398.92  max =  404.93  avg =  402.18
        resnet50  min =  545.39  max =  558.67  avg =  551.90
       resnet101  min =  948.88  max =  960.51  avg =  952.99
       resnet152  min = 1350.78  max = 1373.51  avg = 1363.40
       resnext50  min =  660.55  max =  698.07  avg =  669.49
resnext101-32x4d  min = 1219.80  max = 1232.07  avg = 1227.58
resnext152-32x4d  min = 1788.03  max = 1798.79  avg = 1795.48
          vgg-16  min =  883.33  max =  903.98  avg =  895.03
     yolov1-tiny  min =  222.40  max =  227.51  avg =  224.67
     yolov2-tiny  min =  250.54  max =  259.84  avg =  252.38
     yolov3-tiny  min =  240.80  max =  249.98  avg =  245.08
  • Firefly RK3399 thread4
firefly@firefly:~/project/darknet2ncnn/benchmark$ ./benchdarknet 10  4 &
[1] 4663 
loop_count = 10
num_threads = 4
powersave = 0
firefly@firefly:~/project/darknet2ncnn/benchmark$ taskset -pc 0-3 4663
pid 4663's current affinity list: 0-5
pid 4663's new affinity list: 0-3        
           cifar  min =   96.51  max =  108.22  avg =  100.60
         alexnet  min =  411.38  max =  432.00  avg =  420.11
         darknet  min =  101.89  max =  119.73  avg =  106.46
       darknet19  min =  421.46  max =  453.59  avg =  433.74
       darknet53  min = 1375.30  max = 1492.79  avg = 1406.82
     densenet201  min = 1154.26  max = 1343.53  avg = 1218.28
      extraction  min =  399.31  max =  460.01  avg =  428.17
        resnet18  min =  317.70  max =  376.89  avg =  338.93
        resnet34  min =  567.30  max =  604.44  avg =  580.65
        resnet50  min =  838.94  max =  978.21  avg =  925.14
       resnet101  min = 1562.60  max = 1736.91  avg = 1642.27
       resnet152  min = 2250.32  max = 2394.38  avg = 2311.42
       resnext50  min =  993.34  max = 1210.04  avg = 1093.05
resnext101-32x4d  min = 2207.74  max = 2366.66  avg = 2281.82
resnext152-32x4d  min = 3139.89  max = 3372.58  avg = 3282.99
          vgg-16  min = 1259.17  max = 1359.55  avg = 1300.04
     yolov1-tiny  min =  272.31  max =  330.71  avg =  295.98
     yolov2-tiny  min =  314.25  max =  352.12  avg =  329.02
     yolov3-tiny  min =  300.28  max =  349.13  avg =  322.54

Support network(Zoo)

Zoo(Baidu Cloud):https://pan.baidu.com/s/1BgqL8p1yB4gRPrxAK73omw

Cifar

  1. cifar

ImageNet

  1. alexnet
  2. darknet
  3. darknet19
  4. darknet53
  5. densenet201
  6. extraction
  7. resnet18
  8. resnet34
  9. resnet50
  10. resnet101
  11. resnet152
  12. resnext50
  13. resnext101-32x4d
  14. resnext152-32x4d
  15. vgg-16

YOLO

  1. yolov1-tiny
  2. yolov2-tiny
  3. yolov2
  4. yolov3-tiny
  5. yolov3
  6. yolov3-spp

Benchmark

Time: ms

Network i7-7700K 4.20GHz 8thread IMX6Q,Topeet 4thead Firefly rk3399 2thread Firefly rk3399 4thread
cifar 62 302 85 100
alexnet 92 649 218 420
darknet 28 297 88 106
darknet19 202 1218 333 433
darknet53 683 3235 897 1406
densenet201 218 2647 681 1218
extraction 244 1226 334 428
resnet18 174 764 240 338
resnet34 311 1408 402 580
resnet50 276 2092 551 925
resnet101 492 3758 952 1642
resnet152 704 5500 1363 2311
resnext50 169 2595 669 1093
resnext101-32x4d 296 5274 1227 2281
resnext152-32x4d 438 7818 1795 3282
vgg-16 884 3597 895 1300
yolov1-tiny 98 843 224 295
yolov2-tiny 155 987 252 329
yolov2 1846 Out of memofy Out of memofy Out of memofy
yolov3-tiny 159 951 245 322
yolov3 5198 Out of memofy Out of memofy Out of memofy
yolov3-spp 5702 Out of memofy Out of memofy Out of memofy