StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation
StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation
Wonjong Jang, Gwangjin Ju, Yucheol Jung, Jiaolong Yang, Xin Tong, Seungyong Lee, SIGGRAPH 2021
Overview
Explanation
Requirements
Usage
First download pre-trained model weights:
bash ./download.sh
Train
python -m torch.distributed.launch --nproc_per_node=N_GPU train.py --name EXPERIMENT_NAME --freeze_D
Test
Test on user's input images:
python test.py --ckpt CHECKPOINT_PATH --input_dir INPUT_IMAGE_PATH --output_dir OUTPUT_CARICATURE_PATH --invert_images
We provide some sample images. Test on sample images:
python test.py --ckpt CHECKPOINT_PATH --input_dir examples/samples --output_dir examples/results --invert_images
It inverts latent codes from input photos and generates caricatures from latent codes.
Examples
Citation
If you find this code useful, please consider citing:
@article{Jang2021StyleCari,
author = {Wonjong Jang and Gwangjin Ju and Yucheol Jung and Jiaolong Yang and Xin Tong and Seungyong Lee},
title = {StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation},
booktitle = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH)},
publisher = {ACM},
volume = {40},
number = {4},
year = {2021}
}
Download pre-trained models
Contact
License
This software is being made available under the terms in the LICENSE file.
Any exemptions to these terms require a license from the Pohang University of Science and Technology.
Credits