• Stars
    star
    334
  • Rank 126,264 (Top 3 %)
  • Language
    Python
  • License
    BSD 2-Clause "Sim...
  • Created almost 8 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A compiler for ARM, X86, MSP430, xtensa and more implemented in pure Python

Introduction

The PPCI (Pure Python Compiler Infrastructure) project is a compiler written entirely in the Python programming language. It contains front-ends for various programming languages as well as machine code generation functionality. With this library you can generate (working!) machine code using Python (and thus very easy to explore, extend, etc.)!

The project contains:

  • Language frontends for C, Python, Pascal, Basic and Brainfuck
  • Code generation for several architectures: 6500, arm, avr, m68k, microblaze, msp430, openrisc, risc-v, stm8, x86_64, xtensa
  • Command line utilities, such as ppci-cc, ppci-ld and ppci-opt
  • WebAssembly, JVM, OCaml support
  • Support for ELF, EXE, S-record and hexfile formats
  • An intermediate representation (IR) which can be serialized in json
  • The project can be used as a library so you can script the compilation process

Installation

Since the compiler is a python package, you can install it with pip:

$ pip install ppci

Usage

An example of commandline usage:

$ cd examples/linux64/hello-make
$ ppci-cc -c -O1 -o hello.o hello.c
...
$ ppci-ld --entry main --layout linux64.ld hello.o -o hello
...
$ ./hello
Hello, World!

API example to compile C code:

>>> import io
>>> from ppci.api import cc, link
>>> source_file = io.StringIO("""
...  int printf(char* fmt) { }
...
...  void main() {
...     printf("Hello world!\n");
...  }
... """)
>>> obj = cc(source_file, 'arm')
>>> obj = link([obj])

Example how to assemble some assembly code:

>>> import io
>>> from ppci.api import asm
>>> source_file = io.StringIO("""section code
... pop rbx
... push r10
... mov rdi, 42""")
>>> obj = asm(source_file, 'x86_64')
>>> obj.get_section('code').data
bytearray(b'[ARH\xbf*\x00\x00\x00\x00\x00\x00\x00')

Example of the low level api usage:

>>> from ppci.arch.x86_64 import instructions, registers
>>> i = instructions.Pop(registers.rbx)
>>> i.encode()
b'['

Functionality

  • Command line utilities:
  • Can be used with tools like make or other build tools.
  • Language support:
    • C
    • Pascal
    • Python
    • Basic
    • Brainfuck
    • C3 (PPCI's own systems language, intended to address some pitfalls of C)
  • CPU support:
    • 6500, arm, avr, m68k, microblaze, msp430, openrisc, risc-v, stm8, x86_64, xtensa
  • Support for:
    • WebAssembly
    • JVM
    • OCaml bytecode
    • LLVM IR
    • DWARF debugging format
  • File formats:
    • ELF files
    • COFF PE (EXE) files
    • hex files
    • S-record files
  • Uses well known human-readable and machine-processable formats like JSON and XML as its tools' formats.

Documentation

Documentation can be found here:

Warning

This project is in alpha state and not ready for production use!

You can try out PPCI at godbolt.org, a site which offers Web access to various compilers: https://godbolt.org/g/eooaPP

gitter appveyor codecov docstate travis codacygrade codacycoverage downloads conda