There are no reviews yet. Be the first to send feedback to the community and the maintainers!
ocrsegment
a deep learning model for page layout analysis / segmentation.icpr2018_ocr_papers
icpr2018_ocr_papers about ocrnonMaximumSuppression
非极大值抑制,包含了matlab,c,,c++,3种实现的代码,完美运行。并带c++,Matlab测试demo。所有程序都有详细的注释。GOOD LUCK!Character-Segmentation
Character Segmentation using TensorFlowGENKI
GENKI数据集是由加利福尼亚大学的机器概念实验室收集。该数据集包含GENKI-R2009a,GENKI-4K,GENKI-SZSL三个部分。GENKI-R2009a包含11159个图像,GENKI-4K包含4000个图像,分为“笑”和“不笑”两种,每个图片的人脸的尺度大小,姿势,光照变化,头的转动等都不一样,专门用于做笑脸识别。GENKI-SZSL包含3500个图像,这些图像包括广泛的背景,光照条件,地理位置,个人身份和种族等。grpc_tensorflow_demo
tensorflow mnist demo api interface,include grpc,flask,webpy,tornado,django,rabbitMQ,redis,celery,tf serving,freeze_optimize_quantizesliding_convolution
sliding convolution method for ocr recenet-as-linux
基于ncnn的android端的enet分割CNN_GRU_CTC
基于传统多标签的定长验证码识别和基于GRU+CTC的不定长验证码识别yolov1_tutorial
the description of yolov1 from deepsystem.iohog
an implement of hog+svm &hog+cascade,using c++multiple_lable_classifition
图像多标签分类标注工具opencv-east
use the opencv interface to run eastmobilev2yolov3-as-linux
基于mobilev2和YOLOv3的目标检测的android端的ncnn的实现CMU-MIT
CMU-MIT是由卡内基梅隆大学和麻省理工学院一起收集的数据集,所有图片都是黑白的gif格式。里面包含511个闭合的人脸图像,其中130个是正面的人脸图像。mtcnn-linux-as
mtcnn基于android和ncnn的程序Disjoint-Sets-Union-Find
an implement of C++ disjoint setunet
a unet structure for image segmentation implements KerasMobileNetSSD-linux-as
基于ssd和ncnn的android下的推理代码srez
Image super-resolution with DCGAN using tensorflowemotion_calssify
an emotion classify demo based on kerasmachine-learning-Demo
机器学习的常用算法demo,包括python,cppcrawler_baidu_pics
SqueezeClassify-as
基于ncnn的android端的squeezenet的图片分类AI4E
documents for maching learningMTCNN
mtcnn face detection using caffe librarypython-basic-library
ptb_rnn_test
Example / benchmark for building a PTB LSTM model,using dropout between LSTM to increase accuracytensorflow_lab
some useful functions of tensorflowchaoxing_spider
a spider used to crawl books in jpg format.SXNJU_spider
download all the books in pdf format from SXNJULove Open Source and this site? Check out how you can help us