VoxelGPT
Wish you could search your images or videos without writing a line of code? Now you can! π
VoxelGPT is a FiftyOne Plugin that combines the power of GPT-3.5 with FiftyOne's computer vision query language, enabling you to filter, sort, and semantically slice your data with natural language.
voxelgpt_hero.mp4
Live demo
πππ You can try VoxelGPT live at gpt.fiftyone.ai!
Capabilities
VoxelGPT is capable of handling any of the following types of queries:
When you ask VoxelGPT a question, it will interpret your intent and determine which type of query you are asking. If VoxelGPT is unsure, it will ask you to clarify.
Querying your dataset
voxelgpt_dataset.mp4
You can ask VoxelGPT to search your datasets for you. Here's some examples of things you can ask:
- Retrieve me 10 random samples
- Display the most unique images with a false positive prediction
- Just the images with at least 2 people
- Show me the 25 images that are most similar to the first image with a cat
Under the hood, VoxelGPT interprets your query and translates it into the corresponding dataset view. VoxelGPT understands the schema of your dataset, as well as things like evaluation runs and similarity indexes. It can also automatically inspect the contents of your dataset in order to retrieve specific entities.
Querying the FiftyOne docs
voxelgpt_docs.mp4
VoxelGPT is not only a pair programmer; it is also an educational tool. VoxelGPT has access to the entire FiftyOne docs, which it can use to answer FiftyOne-related questions.
Here's some examples of documentation queries you can ask VoxelGPT:
- How do I load a dataset from the FiftyOne Zoo?
- What does the match() stage do?
- Can I export my dataset in COCO format?
General computer vision queries
voxelgpt_cv.mp4
Finally, VoxelGPT can answer general questions about computer vision, machine learning, and data science. It can help you to understand basic concepts and learn how to overcome data quality issues.
Here's some examples of computer vision queries you can ask VoxelGPT:
- What is the difference between precision and recall?
- How can I detect faces in my images?
- What are some ways I can reduce redundancy in my dataset?
Installation
If you haven't already, install FiftyOne:
pip install fiftyone
You'll also need to provide an OpenAI API key (create one):
export OPENAI_API_KEY=XXXXXXXX
App-only use
If you only want to use VoxelGPT in the FiftyOne App, then you can simply install it as a plugin:
fiftyone plugins download https://github.com/voxel51/voxelgpt
fiftyone plugins requirements @voxel51/voxelgpt --install
Local use/development
If you want to directly use the voxelgpt
module or develop the project
locally, then you'll want to clone repository:
git clone https://github.com/voxel51/voxelgpt
cd voxelgpt
install the requirements:
pip install -r requirements.txt
and make the plugin available for use in the FiftyOne App by symlinking it into your plugins directory:
# Symlinks your clone of voxelgpt into your FiftyOne plugins directory
ln -s "$(pwd)" "$(fiftyone config plugins_dir)/voxelgpt"
FiftyOne Teams
Want to add VoxelGPT to your FiftyOne Teams deployment? You can! Instructions here.
Using VoxelGPT in the App
You can use VoxelGPT in the FiftyOne App by loading any dataset:
import fiftyone as fo
import fiftyone.zoo as foz
dataset = foz.load_zoo_dataset("quickstart")
session = fo.launch_app(dataset)
and then either:
- Clicking on the OpenAI icon above the grid
- Pressing the
+
icon next to the Samples tab and choosing VoxelGPT
voxelgpt_open.mp4
For example, try asking the following questions:
- What are some popular model architectures for computer vision?
- How do I search for specific objects in my dataset?
- Show me predicted airplanes
Pro tip: use the now
keyword to incorporate your previous
prompts as context for your next query!
You can also run VoxelGPT as an
operator by
pressing the ~
key on your keyboard and selecting Ask VoxelGPT
from the
list. This will open up a small modal where you can type in your query.
Using VoxelGPT in Python
If you've installed locally, you can also directly interact with VoxelGPT via Python.
Interactive sessions
You can use ask_voxelgpt_interactive()
to launch an interactive session where
you can converse with VoxelGPT via input()
prompts:
import fiftyone as fo
import fiftyone.zoo as foz
from voxelgpt import ask_voxelgpt_interactive
dataset = foz.load_zoo_dataset("quickstart")
session = fo.launch_app(dataset)
ask_voxelgpt_interactive(dataset, session=session)
Pro tip: use the now
keyword to incorporate your previous
prompts as context for your next query.
As usual, you can prompt VoxelGPT with any combination of dataset, documentation, and general computer vision queries. For example, a conversation might look like:
You:
what is the difference between precision and recall?
VoxelGPT:
Precision and recall are two important metrics used to evaluate the
performance of a machine learning model in classification tasks. Precision
measures the proportion of true positive predictions among all positive
predictions made by the model. Recall, on the other hand, measures the
proportion of true positive predictions among all actual positive instances
in the dataset.
In other words, precision is the ability of the model to correctly identify
positive instances, while recall is the ability of the model to identify
all positive instances. A high precision means that the model is making
very few false positive predictions, while a high recall means that the
model is able to identify most of the positive instances in the dataset.
It is important to balance precision and recall when evaluating a model's
performance. A model with high precision but low recall may be missing
important positive instances, while a model with high recall but low
precision may be making too many false positive predictions.
In the context of the FiftyOne library, precision and recall can be
computed using the `fiftyone.utils.metrics` module, which provides
functions for computing various classification metrics. For example, the
`fiftyone.utils.metrics.binary_classification` function can be used to
compute precision and recall for binary classification tasks.
You:
does FiftyOne integrate with Label Studio?
VoxelGPT:
Yes, FiftyOne integrates with Label Studio. The integration allows you to
easily upload your data directly from FiftyOne to Label Studio for labeling.
You can get started with Label Studio through a simple pip install to get a
local server up and running. FiftyOne provides simple setup instructions
that you can use to specify the necessary account credentials and server
endpoint to use. FiftyOne provides an API to create projects, upload data,
define label schemas, and download annotations using Label Studio, all
programmatically in Python. All of the following label types are supported
for image datasets: Classification, Detections, Instance segmentations,
Polygons and polylines, Keypoints, Scalar fields, and Semantic segmentation.
Sources:
- https://docs.voxel51.com/integrations/index.html
- https://docs.voxel51.com/integrations/labelstudio.html
You:
show me predicted airplanes
VoxelGPT:
Identified potential algorithms: evaluation
No evaluation runs found.
Identified potential fields: predictions
Identified potential label classes: {'predictions': ['airplane']}
Identified potential view stages: ['match', 'filter_labels', 'match_labels', 'exclude_labels', 'filter_field']
Okay, I'm going to load dataset.filter_labels("predictions",F("label") == "airplane")
You:
now only show me the first 10 samples
VoxelGPT:
Identified potential algorithms: evaluation
No evaluation runs found.
Identified potential fields: predictions
Identified potential label classes: {'predictions': ['airplane']}
Identified potential view stages: ['match', 'limit', 'limit_labels', 'skip', 'sort_by']
Okay, I'm going to load dataset.match(F("predictions.detections.label").contains("airplane")).limit(10)
You: exit
In interactive mode, VoxelGPT automatically loads any views it creates in the App, and you can access them via your session object:
print(session.view.count("predictions.detections"))
Single queries
You can also use ask_voxelgpt()
to prompt VoxelGPT with individual queries:
from voxelgpt import ask_voxelgpt
ask_voxelgpt("Does FiftyOne integrate with CVAT?")
Yes, FiftyOne integrates with CVAT, which is an open-source image and video
annotation tool. You can upload your data directly from FiftyOne to CVAT to add or
edit labels. You can use CVAT either through the hosted server at app.cvat.ai or
through a self-hosted server. In either case, FiftyOne provides simple setup
instructions that you can use to specify the necessary account credentials and
server endpoint to use. The tight integration between FiftyOne and CVAT allows
you to curate and explore datasets in FiftyOne and then send off samples or
existing labels for annotation in CVAT with just one line of code. To use CVAT,
you must create an account on a CVAT server. By default, FiftyOne uses app.cvat.ai.
If you havenβt already, go to app.cvat.ai and create an account now. Another option
is to set up CVAT locally and then configure FiftyOne to use your self-hosted server.
A primary benefit of setting up CVAT locally is that you are limited to 10 tasks and
500MB of data with app.cvat.ai.
Sources:
- https://docs.voxel51.com/integrations/cvat.html#examples
- https://docs.voxel51.com/tutorials/cvat_annotation.html#Annotating-Datasets-with-CVAT
- https://docs.voxel51.com/tutorials/cvat_annotation.html#Setup
- https://docs.voxel51.com/integrations/index.html#fiftyone-integrations
When VoxelGPT creates a view in response to your query, it is returned:
import fiftyone as fo
import fiftyone.zoo as foz
dataset = foz.load_zoo_dataset("quickstart")
view = ask_voxelgpt("show me 10 random samples", dataset)
Identified potential view stages: ['match', 'limit', 'skip', 'take', 'sort_by']
Okay, I'm going to load dataset.take(10)
Keywords
VoxelGPT is trained to recognize certain keywords that help it understand your intent:
Keyword | Meaning |
---|---|
show /display |
Tells VoxelGPT that you want it to query your dataset and display the results |
docs /how /FiftyOne |
Tells VoxelGPT that you want it to query the FiftyOne docs. |
now |
Use your chat history as context to interpret your next query. For example, if you ask "show me images with people" and then ask "now show me the 10 most unique ones", VoxelGPT will understand that you want to show the 10 most unique images with people |
help |
Prints a help message with usage instructions |
reset |
Resets the conversation history |
exit |
Exits interactive Python sessions |
Contributing
Contributions are welcome! Check out the contributions guide for instructions.
How does it work?
VoxelGPT uses:
- OpenAI's GPT-3.5 model to generate answers, including Python code
- OpenAI's text-embedding-ada-002 model to embed input text prompts
- LangChain provides the connective tissue for the application
- FiftyOne's plugin framework to provide the interactive panel in the FiftyOne App
Limitations
Media types
VoxelGPT currently only supports image datasets. We're working on adding support for videos and other media types.
Examples
This implementation is based on a limited set of examples, so it may not generalize well to all datasets. The more specific your query, the better the results will be. If you find that the results are not what you expect, please let us know!
View stages
The current implementation supports most FiftyOne
view stages, but
certain stages like concat()
, mongo()
, and geo_within()
are not yet
supported. We're working on it!
About FiftyOne
If you've made it this far, we'd greatly appreciate if you'd take a moment to check out FiftyOne and give us a star!
FiftyOne is an open source library for building high-quality datasets and computer vision models. It's the engine that powers this project.
Thanks for visiting! π
Join the Community
If you want join a fast-growing community of engineers, researchers, and practitioners who love computer vision, join the FiftyOne Slack community! πππ