• Stars
    star
    103
  • Rank 333,046 (Top 7 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 7 years ago
  • Updated almost 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A lightweight class for saving the best Tensorflow checkpoints.

checkmate

Checkmate is designed to be a simple drop-in solution for a very common Tensorflow use-case: keeping track of the best model checkpoints during training.

The BestCheckpointSaver is a wrapper around a tf.train.Saver.

The BestCheckpointSaver provides the ability to save the best n checkpoints, whereas the tf.train.Saver can only save the last n checkpoints.

Features

  • Save only best n checkpoints
  • Compares checkpoints based on a user-provided value
  • Can rank checkpoints by highest or lowest values
  • Automatically delete outdated checkpoints
  • Provide at a glance record of each checkpoint's associated value (the user-provided value obtained from that checkpoint)

Using the BestCheckpointSaver

from checkmate import BestCheckpointSaver

# ...build model...

best_ckpt_saver = BestCheckpointSaver(
  save_dir=best_checkpoint_dir,
  num_to_keep=3,
  maximize=True
)

# train and evaluate
for train_step in range(max_steps):
  sess.run(train_op)
  if train_step % evaluation_interval == 0:
    accuracy = sess.run(eval_op, feed_dict=validation_data)
    best_ckpt_saver.handle(accuracy, sess, global_step_tensor)

Loading the best checkpoint

import checkmate

# ...build model...

saver = tf.train.Saver()
saver.restore(sess, checkmate.get_best_checkpoint(best_checkpoint_dir, select_maximum_value=True))

At this stage, the module is no-frills with limited documentation. It is not intended to work in distributed settings or with complex Session/Graph management (i.e. the tf.Estimator framework). Contributions are welcome.