• Stars
    star
    183
  • Rank 210,154 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 8 years ago
  • Updated over 8 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Multi-GPU reinforcement learning using Deep Q-Network in TensorFlow for OpenAI Gym

dist-dqn

Distributed Reinforcement Learning using Deep Q-Network in TensorFlow.

Distributed DQN framework for training OpenAI Gym (https://gym.openai.com/) environments over multiple GPUs. Can also be configured to run in a cluster of hosts.

Single node training: ./scripts/dqn_single_node.sh <env_type> <env_name>
Multi-GPU training: ./scripts/dqn_multi_gpu.sh <env_type> <env_name> <num_gpus>
Currently supported values for env_type are control for classic control environments (https://gym.openai.com/envs#classic_control) and atari for Atari envrionments (https://gym.openai.com/envs#atari).

Implements a simple fully-connected network with two hidden layers for small environments like CartPole (https://gym.openai.com/envs/CartPole-v0) as well as the convolutional network architecture described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf for enviroments such as Pong (https://gym.openai.com/envs/Pong-v0).

TODO: More info soon!