• Stars
    star
    653
  • Rank 68,968 (Top 2 %)
  • Language
    Python
  • Created almost 7 years ago
  • Updated over 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Network Intrusion Detection KDDCup '99', NSL-KDD and UNSW-NB15

Network-Intrusion-Detection

Network Intrusion Detection KDDCup '99', NSL-KDD and UNSW-NB15

DOI

KDDCup '99': http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

NSL-KDD: http://www.unb.ca/cic/datasets/nsl.html

UNSW-NB15: https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/

Please cite the following papers, if you use the code as part of your research

  1. R. Vinayakumar, K. P. Soman, Prabaharan Poornachandran: Applying convolutional neural network for network intrusion detection. ICACCI 2017: 1222-1228 https://ieeexplore.ieee.org/abstract/document/8126009

  2. R. Vinayakumar, K. P. Soman, Prabaharan Poornachandran: Evaluating effectiveness of shallow and deep networks to intrusion detection system. ICACCI 2017: 1282-1289 https://ieeexplore.ieee.org/document/8126018

  3. R. Vinayakumar, K. P. Soman, Prabaharan Poornachandran: Evaluation of Recurrent Neural Network and its variants for Intrusion Detection System (IDS)" has accepted in Special Issue On Big Data Searching, Mining, Optimization & Securing (BSMOS) Peer to Peer Cloud Based Networks in IJISMD https://www.igi-global.com/article/evaluation-of-recurrent-neural-network-and-its-variants-for-intrusion-detection-system-ids/204371

  4. Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access, 7, 41525-41550. https://ieeexplore.ieee.org/abstract/document/8681044

  5. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2019). A Comparative Analysis of Deep Learning Approaches for Network Intrusion Detection Systems (N-IDSs): Deep Learning for N-IDSs. International Journal of Digital Crime and Forensics (IJDCF), 11(3), 65-89. https://www.igi-global.com/article/a-comparative-analysis-of-deep-learning-approaches-for-network-intrusion-detection-systems-n-idss/227640

More Repositories

1

Signal-Processing-and-Pattern-Classification

Signal-Processing-and-Pattern-Classification - Atrial fibrillation & PCG classification
Jupyter Notebook
51
star
2

Android-Malware-Detection

Android malware detection using static and dynamic analysis
Python
38
star
3

Network-Traffic-Analysis

SSH traffic analysis
Python
22
star
4

DMD2018

Detection of malicious domain names using machine learning and deep learning models
Python
16
star
5

Kalasalingam

IEEE "Invited Talk on Deep Learning" 03/02/2018
Jupyter Notebook
15
star
6

CNN-RNN

Image classification using CNN
Jupyter Notebook
14
star
7

ICMR

ICMR Sponsored Seminar On Deep Learning Techniques and Tools for Medical Applications
Jupyter Notebook
14
star
8

Deep-learning-for-Programmers

Learn to code deep learning algorithms
Jupyter Notebook
11
star
9

CDMC2016

Cybersecurity Data Mining Competition 2016
Python
11
star
10

CDMC2017

Cybersecurity Data Mining Competition 2017
Python
10
star
11

DEFT-2017

Sentiment Analysis and Figurative Language in French Tweets
Python
10
star
12

Malicious-URL-Detection

Malicious URL Detection using classical machine learning and deep learning
9
star
13

Deep-Learning-Basics

Jupyter Notebook
9
star
14

extreme-learning-machine-for-security

Python
8
star
15

WASSA-2017

Determining Emotion Intensity
Python
8
star
16

Domain-generation-algorithms

Domain Generation Algorithms (DGAs) using traitional machine learning and deep learning
8
star
17

maching-learning-CDAC-Technopark

Maching learning workshop at CDAC, Technopark, Thiruvananthapuram
Jupyter Notebook
7
star
18

SMM4H

Social Media Mining for Health Applications Workshop & Shared Task at AMIA 2017
7
star
19

IoT-Botnet

Application of machine learning and deep learning for IoT security
7
star
20

Blockchain-2017

7
star
21

text-classification-using-tflearn

text classification using deep learning
Java
7
star
22

Cybersecurity-Lab-at-CEN

6
star
23

Classification-Of-Spanish-Election-Tweets-COSET-

Python
6
star
24

TEQUIP-FDP-TKM-2017

Jupyter Notebook
6
star
25

AISec-2017

6
star
26

Conference-PPT

6
star
27

AmritaDGA

6
star
28

DeepSci-2017

6
star
29

DeepChem-2017

6
star
30

Financial-Data-Analytics

6
star
31

Power-Quality-Disturbances-Classification

6
star
32

TEQIP-II---PSG

Python
6
star
33

AIC-2018

Application of machine learning for cyber security
Jupyter Notebook
6
star
34

Ibereval-2017

Stance and Gender Detection in Tweets on Catalan Independence
Python
5
star
35

DLC-2018

Application of deep learning for cyber security
Jupyter Notebook
4
star
36

IWSPA-AP-2018

Phishing email detection
2
star
37

homoglyph-Siamese

Siamese neural network architecture for homoglyph attacks detection
2
star
38

Intrusion-detection

Intrusion Detection
1
star
39

shell-programming

Jupyter Notebook
1
star
40

Deep-Net

1
star
41

AI-Data-Science-summer-course

Machine learning tutorials for beginners
Jupyter Notebook
1
star
42

dnn-ember

Static PE malware detection
1
star
43

Segregation-of-Plastic

The aim of this work is to develop an engine which uses modern artificial intelligence approach, deep learning and computer vision to automatically classify the waste into plastic or non-plastic.
1
star
44

DeepImageMalDetect-DIMD

1
star