• This repository has been archived on 09/Jun/2023
  • Stars
    star
    14,025
  • Rank 2,170 (Top 0.05 %)
  • Language
    TeX
  • License
    MIT License
  • Created over 8 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A technical report on convolution arithmetic in the context of deep learning

Convolution arithmetic

A technical report on convolution arithmetic in the context of deep learning.

The code and the images of this tutorial are free to use as regulated by the licence and subject to proper attribution:

Convolution animations

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no strides Arbitrary padding, no strides Half padding, no strides Full padding, no strides
No padding, strides Padding, strides Padding, strides (odd)

Transposed convolution animations

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no strides, transposed Arbitrary padding, no strides, transposed Half padding, no strides, transposed Full padding, no strides, transposed
No padding, strides, transposed Padding, strides, transposed Padding, strides, transposed (odd)

Dilated convolution animations

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no stride, dilation

Generating the Makefile

From the repository's root directory:

$ ./bin/generate_makefile

Generating the animations

From the repository's root directory:

$ make all_animations

The animations will be output to the gif directory. Individual animation steps will be output in PDF format to the pdf directory and in PNG format to the png directory.

Compiling the document

From the repository's root directory:

$ make