Generative Adversarial Imitation Learning
Implementation of Generative Adversarial Imitation Learning(GAIL) using tensorflow
Dependencies
python>=3.5
tensorflow>=1.4
gym>=0.9.3
Gym environment
Env==CartPole-v0
State==Continuous
Action==Discrete
Usage
Train experts
python3 run_ppo.py
Sample trajectory using expert
python3 sample_trajectory.py
Run GAIL
python3 run_gail.py
Run supervised learning
python3 run_behavior_clone.py
Test trained policy
python3 test_policy.py
Default policy is trained with gail
--alg=bc or ppo allows you to change test policy
If you want to test bc policy, specify the number of model.ckpt-number in the directory trained_models/bc
Example
python3 test_policy.py --alg=bc --model=1000
Tensorboard
tensorboard --logdir=log
Results
Fig.1 Training results | legend |
LICENSE
MIT LICENSE