• Stars
    star
    185
  • Rank 208,271 (Top 5 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created over 6 years ago
  • Updated 8 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Text to Speech with PyTorch (English and Mongolian)

PyTorch implementation of Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention based partially on the following projects:

Online Text-To-Speech Demo

The following notebooks are executable on https://colab.research.google.com :

For audio samples and pretrained models, visit the above notebook links.

Training/Synthesizing English Text-To-Speech

The English TTS uses the LJ-Speech dataset.

  1. Download the dataset: python dl_and_preprop_dataset.py --dataset=ljspeech
  2. Train the Text2Mel model: python train-text2mel.py --dataset=ljspeech
  3. Train the SSRN model: python train-ssrn.py --dataset=ljspeech
  4. Synthesize sentences: python synthesize.py --dataset=ljspeech
    • The WAV files are saved in the samples folder.

Training/Synthesizing Mongolian Text-To-Speech

The Mongolian text-to-speech uses 5 hours audio from the Mongolian Bible.

  1. Download the dataset: python dl_and_preprop_dataset.py --dataset=mbspeech
  2. Train the Text2Mel model: python train-text2mel.py --dataset=mbspeech
  3. Train the SSRN model: python train-ssrn.py --dataset=mbspeech
  4. Synthesize sentences: python synthesize.py --dataset=mbspeech
    • The WAV files are saved in the samples folder.