• Stars
    star
    942
  • Rank 48,525 (Top 1.0 %)
  • Language
  • Created about 3 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An index of recommendation algorithms that are based on Graph Neural Networks. (TORS)

GNN based Recommender Systems

An index of recommendation algorithms that are based on Graph Neural Networks.

Our survey A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions is accepted by ACM Transactions on Recommender Systems. A preprint is available on arxiv: link

Please cite our survey paper if this index is helpful.

@article{gao2022survey,
  title={A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions},
  author={Gao, Chen and Zheng, Yu and Li, Nian and Li, Yinfeng and Qin, Yingrong and Piao, Jinghua and Quan, Yuhan and Chang, Jianxin and Jin, Depeng and He, Xiangnan and Li, Yong},
  journal={ACM Transactions on Recommender Systems (TORS)},
  year={2022}
}
Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X., & Li, Y. (2022). A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions. ACM Transactions on Recommender Systems (TORS).

Table of Contents

Recommendation Stages

Matching

Name Paper Venue Year Code
GCMC Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263. arxiv 2017 Python
Pin-Sage Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 974-983). KDD 2018 Python
NGCF Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019, July). Neural graph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 165-174). SIGIR 2019 Python
LightGCN He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval (pp. 639-648). SIGIR 2020 Python
NIA-GCN Sun, J., Zhang, Y., Guo, W., Guo, H., Tang, R., He, X., ... & Coates, M. (2020, July). Neighbor interaction aware graph convolution networks for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1289-1298). SIGIR 2020 NA
DGCF Wang, X., Jin, H., Zhang, A., He, X., Xu, T., & Chua, T. S. (2020, July). Disentangled graph collaborative filtering. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1001-1010). SIGIR 2020 Python
IMP-GCN Liu, F., Cheng, Z., Zhu, L., Gao, Z., & Nie, L. (2021, April). Interest-aware message-passing gcn for recommendation. In Proceedings of the Web Conference 2021 (pp. 1296-1305). WWW 2021 Python
SGL Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., & Xie, X. (2021, July). Self-supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 726-735). SIGIR 2021 Python
LT-OCF Choi, J., Jeon, J., & Park, N. (2021). LT-OCF: Learnable-Time ODE-based Collaborative Filtering. In Proceedings of the 30th ACM International Conference on Information and Knowledge Management (pp. 251-260). CIKM 2021 Python
HMLET Kong, T., Kim, T., Jeon, J., Choi, J., Lee, Y-C.,Park, N., & Kim, S-W. (2022). Linear, or Non-Linear, That is the Question! In Proceedings of the 15th ACM International Web Search and Data Mining Conference (pp. 517-525). WSDM 2022 Python
HS-GCN Liu, H., Wei, Y., Yin, J., & Nie, L. (2022). HS-GCN: Hamming Spatial Graph Convolutional Networks for Recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2022 Python
LGCN Yu, W., Zhang, Z., & Qin, Z. (2022). Low-pass Graph Convolutional Network for Recommendation. AAAI 2022 Python

Ranking

Name Paper Venue Year Code
Fi-GNN Li, Z., Cui, Z., Wu, S., Zhang, X., & Wang, L. (2019, November). Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 539-548). CIKM 2019 Python
PUP Zheng, Y., Gao, C., He, X., Li, Y., & Jin, D. (2020, April). Price-aware recommendation with graph convolutional networks. In 2020 IEEE 36th International Conference on Data Engineering (ICDE) (pp. 133-144). IEEE. ICDE 2020 Python
A2-GCN Liu, F., Cheng, Z., Zhu, L., Liu, C., & Nie, L. (2020). A2-GCN: An attribute-aware attentive GCN model for recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 NA
L0-SIGN Su, Y., Zhang, R., Erfani, S., & Xu, Z. (2021, May). Detecting Beneficial Feature Interactions for Recommender Systems. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI). AAAI 2021 Python
DG-ENN Guo, W., Su, R., Tan, R., Guo, H., Zhang, Y., Liu, Z., ... & He, X. (2021). Dual Graph enhanced Embedding Neural Network for CTRPrediction. arXiv preprint arXiv:2106.00314. KDD 2021 NA
SHCF Li, C., Hu, L., Shi, C., Song, G., & Lu, Y. (2021). Sequence-aware Heterogeneous Graph Neural Collaborative Filtering. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 64-72). Society for Industrial and Applied Mathematics. SDM 2021 Python
GCM Wu, J., He, X., Wang, X., Wang, Q., Chen, W., Lian, J., & Xie, X. (2020). Graph Convolution Machine for Context-aware Recommender System. arXiv preprint arXiv:2001.11402. Frontiers of Computer Science 2021 Python
TGIN Jiang, W., Jiao, Y., Wang, Q., Liang, C., Guo, L., Zhang, Y., ... & Zhu, Y. (2022, February). Triangle Graph Interest Network for Click-through Rate Prediction. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (pp. 401-409). WSDM 2022 Python

Re-ranking

Name Paper Venue Year Code
IRGPR Liu, W., Liu, Q., Tang, R., Chen, J., He, X., & Heng, P. A. (2020, October). Personalized Re-ranking with Item Relationships for E-commerce. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 925-934). CIKM 2020 NA

Recommendation Scenarios

Social Recommendation

Name Paper Venue Year Code
DiffNet Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., & Wang, M. (2019, July). A neural influence diffusion model for social recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 235-244). SIGIR 2019 Python
GraphRec Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The World Wide Web Conference (pp. 417-426). WWW 2019 Python
DANSER Wu, Q., Zhang, H., Gao, X., He, P., Weng, P., Gao, H., & Chen, G. (2019, May). Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems. In The World Wide Web Conference (pp. 2091-2102). WWW 2019 Python
DGRec Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., & Tang, J. (2019, January). Session-based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM international conference on web search and data mining (pp. 555-563). WSDM 2019 Python
HGP Kim, K. M., Kwak, D., Kwak, H., Park, Y. J., Sim, S., Cho, J. H., ... & Ha, J. W. (2019). Tripartite heterogeneous graph propagation for large-scale social recommendation. arXiv preprint arXiv:1908.02569. RecSys 2019 NA
DiffNet++ Wu, L., Li, J., Sun, P., Hong, R., Ge, Y., & Wang, M. (2020). Diffnet++: A neural influence and interest diffusion network for social recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 Python
MHCN Yu, J., Yin, H., Li, J., Wang, Q., Hung, N. Q. V., & Zhang, X. (2021, April). Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation. In Proceedings of the Web Conference 2021 (pp. 413-424). WWW 2021 Python
SEPT Yu, J., Yin, H., Gao, M., Xia, X., Zhang, X., & Hung, N. Q. V. (2021). Socially-Aware Self-Supervised Tri-Training for Recommendation. arXiv preprint arXiv:2106.03569. KDD 2021 Python
GBGCN Zhang, J., Gao, C., Jin, D., & Li, Y. (2021, April). Group-Buying Recommendation for Social E-Commerce. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1536-1547). IEEE. ICDE 2021 Python
KCGN Huang, C., Xu, H., Xu, Y., Dai, P., Xia, L., Lu, M., ... & Ye, Y. (2021, January). Knowledge-aware coupled graph neural network for social recommendation. In AAAI Conference on Artificial Intelligence (AAAI). AAAI 2021 Python
DiffNetLG Song, C., Wang, B., Jiang, Q., Zhang, Y., He, R., & Hou, Y. (2021, July). Social Recommendation with Implicit Social Influence. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1788-1792). SIGIR 2021 NA
RecoGCN Xu, F., Lian, J., Han, Z., Li, Y., Xu, Y., & Xie, X. (2019, November). Relation-aware graph convolutional networks for agent-initiated social e-commerce recommendation. In Proceedings of the 28th ACM international conference on information and knowledge management (pp. 529-538). CIKM 2019 Python
GAT-NSR Mu, N., Zha, D., He, Y., & Tang, Z. (2019, November). Graph attention networks for neural social recommendation. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1320-1327). IEEE. ICTAI 2019 NA
SR-HGNN Xu, H., Huang, C., Xu, Y., Xia, L., Xing, H., & Yin, D. (2020, November). Global context enhanced social recommendation with hierarchical graph neural networks. In 2020 IEEE International Conference on Data Mining (ICDM) (pp. 701-710). IEEE. ICDM 2020 Python
TGRec Bai, T., Zhang, Y., Wu, B., & Nie, J. Y. (2020, December). Temporal Graph Neural Networks for Social Recommendation. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 898-903). IEEE. ICBD 2020 NA
ESRF Yu, J., Yin, H., Li, J., Gao, M., Huang, Z., & Cui, L. (2020). Enhance social recommendation with adversarial graph convolutional networks. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 Python
HOSR Liu, Y., Liang, C., He, X., Peng, J., Zheng, Z., & Tang, J. (2020). Modelling high-order social relations for item recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 NA
GNN-SoR Guo, Z., & Wang, H. (2020). A deep graph neural network-based mechanism for social recommendations. IEEE Transactions on Industrial Informatics, 17(4), 2776-2783. TII 2020 NA
ASR Luo, D., Bian, Y., Zhang, X., & Huan, J. (2020). Attentive Social Recommendation: Towards User And Item Diversities. arXiv preprint arXiv:2011.04797. arxiv 2020 Python

Sequential Recommendation

Name Paper Venue Year Code
ISSR Liu, F., Liu, W., Li, X., & Ye, Y. (2020). Inter-sequence Enhanced Framework for Personalized Sequential Recommendation. arXiv preprint arXiv:2004.12118. AAAI 2020 NA
MA-GNN Ma, C., Ma, L., Zhang, Y., Sun, J., Liu, X., & Coates, M. (2020, April). Memory augmented graph neural networks for sequential recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5045-5052). AAAI 2020 NA
STP-UDGAT Lim, N., Hooi, B., Ng, S. K., Wang, X., Goh, Y. L., Weng, R., & Varadarajan, J. (2020, October). STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention Network for Next POI Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 845-854). CIKM 2020 NA
GPR Chang, B., Jang, G., Kim, S., & Kang, J. (2020, October). Learning graph-based geographical latent representation for point-of-interest recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 135-144). CIKM 2020 NA
GES-SASRec Zhu, T., Sun, L., & Chen, G. (2021). Graph-based Embedding Smoothing for Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2021 Python
RetaGNN Hsu, C., & Li, C. T. (2021, April). RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation. In Proceedings of the Web Conference 2021 (pp. 2968-2979). WWW 2021 Python
TGSRec Fan, Z., Liu, Z., Zhang, J., Xiong, Y., Zheng, L., & Yu, P. S. (2021). Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer. arXiv preprint arXiv:2108.06625. CIKM 2021 Python
SGRec Li, Y., Chen, T., Yin, H., & Huang, Z. (2021). Discovering Collaborative Signals for Next POI Recommendation with Iterative Seq2Graph Augmentation. arXiv preprint arXiv:2106.15814. IJCAI 2021 NA
SURGE Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., ... & Li, Y. (2021, July). Sequential Recommendation with Graph Neural Networks. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 378-387). SIGIR 2021 Python
GME Xie, M., Yin, H., Xu, F., Wang, H., & Zhou, X. (2016, November). Graph-based metric embedding for next poi recommendation. In International Conference on Web Information Systems Engineering (pp. 207-222). Springer, Cham. WISE 2016 NA
Wang et al. Wang, B., & Cai, W. (2020). Knowledge-enhanced graph neural networks for sequential recommendation. Information, 11(8), 388. Information 2020 NA
DGSR Zhang, M., Wu, S., Yu, X., & Wang, L. (2021). Dynamic Graph Neural Networks for Sequential Recommendation. arXiv preprint arXiv:2104.07368. arxiv 2021 NA

Session Recommendation

Name Paper Venue Year Code
SR-GNN Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., & Tan, T. (2019, July). Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 346-353). AAAI 2019 Python
GC-SAN Xu, C., Zhao, P., Liu, Y., Sheng, V. S., Xu, J., Zhuang, F., ... & Zhou, X. (2019, August). Graph Contextualized Self-Attention Network for Session-based Recommendation. In IJCAI (Vol. 19, pp. 3940-3946). IJCAI 2019 Python
TA-GNN Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., & Tan, T. (2020, July). TAGNN: Target attentive graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1921-1924). SIGIR 2020 Python
MGNN-SPred Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). WWW 2020 Python
LESSR Chen, T., & Wong, R. C. W. (2020, August). Handling information loss of graph neural networks for session-based recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1172-1180). KDD 2020 Python
MKM-SR Meng, W., Yang, D., & Xiao, Y. (2020, July). Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1091-1100). SIGIR 2020 Python
GAG Qiu, R., Yin, H., Huang, Z., & Chen, T. (2020, July). Gag: Global attributed graph neural network for streaming session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 669-678). SIGIR 2020 Python
GCE-GNN Wang, Z., Wei, W., Cong, G., Li, X. L., Mao, X. L., & Qiu, M. (2020, July). Global context enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 169-178). SIGIR 2020 Python
SGNN-HN Pan, Z., Cai, F., Chen, W., Chen, H., & de Rijke, M. (2020, October). Star graph neural networks for session-based recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1195-1204). CIKM 2020 NA
DHCN Xia, X., Yin, H., Yu, J., Wang, Q., Cui, L., & Zhang, X. (2020). Self-supervised hypergraph convolutional networks for session-based recommendation. arXiv preprint arXiv:2012.06852. AAAI 2021 Python
SHARE Wang, J., Ding, K., Zhu, Z., & Caverlee, J. (2021). Session-based Recommendation with Hypergraph Attention Networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 82-90). Society for Industrial and Applied Mathematics. SDM 2021 NA
SERec Chen, T., & Wong, R. C. W. (2021, March). An Efficient and Effective Framework for Session-based Social Recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 400-408). WSDM 2021 Python
COTREC Xia, X., Yin, H., Yu, J., Shao, Y., & Cui, L. (2021). Self-Supervised Graph Co-Training for Session-based Recommendation. arXiv preprint arXiv:2108.10560. CIKM 2021 Python
DAT-MDI Chen, C., Guo, J., & Song, B. (2021, July). Dual Attention Transfer in Session-based Recommendation with Multi-dimensional Integration. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 869-878). SIGIR 2021 NA
TASRec Zhou, H., Tan, Q., Huang, X., Zhou, K., & Wang, X. (2021). Temporal Augmented Graph Neural Networks for Session-Based Recommendations. SIGIR 2021 NA
G3SR Deng, Z. H., Wang, C. D., Huang, L., Lai, J. H., & Philip, S. Y. (2022). G^ 3SR: Global Graph Guided Session-Based Recommendation. IEEE Transactions on Neural Networks and Learning Systems. TNNLS 2022 NA
HG-GNN Pang, Y., Wu, L., Shen, Q., Zhang, Y., Wei, Z., Xu, F., ... & Pei, J. (2022, February). Heterogeneous global graph neural networks for personalized session-based recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (pp. 775-783). WSDM 2022 Python
CGL Pan, Z., Cai, F., Chen, W., Chen, C., & Chen, H. (2022). Collaborative Graph Learning for Session-based Recommendation. ACM Transactions on Information Systems (TOIS), 40(4), 1-26. TOIS 2022 NA
CAGE Sheu, H. S., & Li, S. (2020, September). Context-aware graph embedding for session-based news recommendation. In Fourteenth ACM conference on recommender systems (pp. 657-662). RecSys 2020 NA
A-PGNN Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., & Wang, L. (2020). Personalized graph neural networks with attention mechanism for session-aware recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 Python
DGTN Zheng, Y., Liu, S., Li, Z., & Wu, S. (2020, November). DGTN: Dual-channel Graph Transition Network for Session-based Recommendation. In 2020 International Conference on Data Mining Workshops (ICDMW) (pp. 236-242). IEEE. ICDMW 2020 Python
FGNN Qiu, R., Li, J., Huang, Z., & Yin, H. (2019, November). Rethinking the item order in session-based recommendation with graph neural networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 579-588). CIKM 2019 Python

Bundle Recommendation

Name Paper Venue Year Code
BGCN Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Bundle recommendation with graph convolutional networks. In Proceedings of the 43rd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 1673-1676). SIGIR 2020 Python
HFGN Li, X., Wang, X., He, X., Chen, L., Xiao, J., & Chua, T. S. (2020, July). Hierarchical fashion graph network for personalized outfit recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 159-168). SIGIR 2020 Python
BundleNet Deng, Q., Wang, K., Zhao, M., Zou, Z., Wu, R., Tao, J., ... & Chen, L. (2020, October). Personalized Bundle Recommendation in Online Games. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2381-2388). CIKM 2020 NA
DPR Zheng, Z., Wang, C., Xu, T., Shen, D., Qin, P., Huai, B., ... & Chen, E. (2021, April). Drug Package Recommendation via Interaction-aware Graph Induction. In Proceedings of the Web Conference 2021 (pp. 1284-1295). WWW 2021 NA
DPG Zheng, Z., Wang, C., Xu, T., Shen, D., Qin, P., Zhao, X., ... & Chen, E. (2022). Interaction-aware Drug Package Recommendation via Policy Gradient. ACM Transactions on Information Systems (TOIS). TOIS 2022 NA
MIDGN Zhao, S., Wei, W., Zou, D., & Mao, X. (2022). Multi-view intent disentangle graph networks for bundle recommendation. arXiv preprint arXiv:2202.11425. AAAI 2022 Python

Cross Domain Recommendation

Name Paper Venue Year Code
PPGN Zhao, C., Li, C., & Fu, C. (2019, November). Cross-domain recommendation via preference propagation graphnet. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 2165-2168). CIKM 2019 Python
BiTGCF Liu, M., Li, J., Li, G., & Pan, P. (2020, October). Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 885-894). CIKM 2020 Python
DAN Wang, B., Zhang, C., Zhang, H., Lyu, X., & Tang, Z. (2020, October). Dual Autoencoder Network with Swap Reconstruction for Cold-Start Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2249-2252). CIKM 2020 NA
HeroGRAPH Cui, Q., Wei, T., Zhang, Y., & Zhang, Q. (2020). HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation. In ORSUM@ RecSys. RecSys 2020 Python
DAGCN Guo, L., Tang, L., Chen, T., Zhu, L., Nguyen, Q. V. H., & Yin, H. (2021). DA-GCN: A Domain-aware Attentive Graph Convolution Network for Shared-account Cross-domain Sequential Recommendation. arXiv preprint arXiv:2105.03300. IJCAI 2021 NA

Recommendation Objectives

Multi-behavior Recommendation

Name Paper Venue Year Code
MBGCN Jin, B., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Multi-behavior recommendation with graph convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 659-668). SIGIR 2020 Python
MGNN-SPred Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). WWW 2020 Python
MGNN Zhang, W., Mao, J., Cao, Y., & Xu, C. (2020, October). Multiplex Graph Neural Networks for Multi-behavior Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2313-2316). CIKM 2020 NA
LP-MRGNN Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2021). Incorporating Link Prediction into Multi-Relational Item Graph Modeling for Session-based Recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2021 NA
GNMR Xia, L., Huang, C., Xu, Y., Dai, P., Lu, M., & Bo, L. (2021, April). Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1931-1936). IEEE. ICDE 2021 Python
MB-GMN Xia, L., Xu, Y., Huang, C., Dai, P., & Bo, L. (2021, July). Graph meta network for multi-behavior recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 757-766). SIGIR 2021 Python
KHGT Xia, L., Huang, C., Xu, Y., Dai, P., Zhang, X., Yang, H., ... & Bo, L. (2021, May). Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 4486-4493). AAAI 2021 Python
GHCF Chen, C., Ma, W., Zhang, M., Wang, Z., He, X., Wang, C., ... & Ma, S. (2021, May). Graph Heterogeneous Multi-Relational Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 3958-3966). AAAI 2021 Python
DMBGN Xiao, F., Li, L., Xu, W., Zhao, J., Yang, X., Lang, J., & Wang, H. (2021). DMBGN: Deep Multi-Behavior Graph Networks for Voucher Redemption Rate Prediction. arXiv preprint arXiv:2106.03356. KDD 2021 Python
HMG-CR Yang, H., Chen, H., Li, L., Yu, P. S., & Xu, G. (2021). Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation. arXiv preprint arXiv:2109.02859. ICDM 2021 Python
GNNH Yu, B., Zhang, R., Chen, W., & Fang, J. (2021). Graph neural network based model for multi-behavior session-based recommendation. GeoInformatica, 1-19. GeoInformatica 2021 NA

Diversity

Name Paper Venue Year Code
V2HT Li, M., Gan, T., Liu, M., Cheng, Z., Yin, J., & Nie, L. (2019, November). Long-tail hashtag recommendation for micro-videos with graph convolutional network. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 509-518). CIKM 2019 NA
BGCF Sun, J., Guo, W., Zhang, D., Zhang, Y., Regol, F., Hu, Y., ... & Coates, M. (2020, August). A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2030-2039). KDD 2020 Python
DGCN Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y. (2021, April). DGCN: Diversified Recommendation with Graph Convolutional Networks. In Proceedings of the Web Conference 2021 (pp. 401-412). WWW 2021 Python
FH-HAT Xie, R., Liu, Q., Liu, S., Zhang, Z., Cui, P., Zhang, B., & Lin, L. (2021). Improving Accuracy and Diversity in Matching of Recommendation with Diversified Preference Network. arXiv preprint arXiv:2102.03787. TBD 2021 NA
Isufi et al. Isufi, E., Pocchiari, M., & Hanjalic, A. (2021). Accuracy-diversity trade-off in recommender systems via graph convolutions. Information Processing & Management, 58(2), 102459. IPM 2021 Python

Explainability

Name Paper Venue Year Code
RippleNet Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., & Guo, M. (2018, October). Ripplenet: Propagating user preferences on the knowledge graph for recommender systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 417-426). CIKM 2018 Python
EIUM Huang, X., Fang, Q., Qian, S., Sang, J., Li, Y., & Xu, C. (2019, October). Explainable interaction-driven user modeling over knowledge graph for sequential recommendation. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 548-556). MM 2019 NA
KPRN Wang, X., Wang, D., Xu, C., He, X., Cao, Y., & Chua, T. S. (2019, July). Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 5329-5336). AAAI 2019 Python
RuleRec Ma, W., Zhang, M., Cao, Y., Jin, W., Wang, C., Liu, Y., ... & Ren, X. (2019, May). Jointly learning explainable rules for recommendation with knowledge graph. In The World Wide Web Conference (pp. 1210-1221). WWW 2019 Python
PGPR Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., & Zhang, Y. (2019, July). Reinforcement knowledge graph reasoning for explainable recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 285-294). SIGIR 2019 Python
KGAT Wang, X., He, X., Cao, Y., Liu, M., & Chua, T. S. (2019, July). Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 950-958). KDD 2019 Python
TMER Chen, H., Li, Y., Sun, X., Xu, G., & Yin, H. (2021, March). Temporal meta-path guided explainable recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 1056-1064). WSDM 2021 Python
ECFKG Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. ICML 2019 Python
HAGERec Yang, Z., & Dong, S. (2020). HAGERec: hierarchical attention graph convolutional network incorporating knowledge graph for explainable recommendation. Knowledge-Based Systems, 204, 106194. KBS 2020 NA

Fairness

Name Paper Venue Year Code
FairGo Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., & Wang, M. (2021, April). Learning Fair Representations for Recommendation: A Graph-based Perspective. In Proceedings of the Web Conference 2021 (pp. 2198-2208). WWW 2021 Python
FairGNN Dai, E., & Wang, S. (2021, March). Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 680-688). WSDM 2021 Python
Fairwalk Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards fair graph embedding. IJCAI 2019 Python
CFCGE Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. ICML 2019 Python

More Repositories

1

Traffic-Benchmark

Python
267
star
2

DRL-urban-planning

A deep reinforcement learning (DRL) based approach for spatial layout of land use and roads in urban communities. (Nature Computational Science)
Jupyter Notebook
176
star
3

DICE

The official implementation of "Disentangling User Interest and Conformity for Recommendation with Causal Embedding" (WWW '21)
Python
147
star
4

UniST

Official implementation for "UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction" (KDD 2024)
Python
91
star
5

SIGIR21-SURGE

Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".
Python
83
star
6

CLSR

The official implementation of "Disentangling Long and Short-Term Interests for Recommendation" (WWW '22)
Python
70
star
7

UV-SAM

UV-SAM
Jupyter Notebook
68
star
8

Spatio-temporal-Diffusion-Point-Processes

A diffusion-based framework for spatio-temporal point processes
Python
57
star
9

DGCN

The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)
Python
56
star
10

Causal-Recommender-Systems

An index of causal inference based recommendation algorithms (TOIS).
46
star
11

LCSim

LCSim: A Large-Scale Controllable Traffic Simulator
Jupyter Notebook
42
star
12

GPD

The official implementation of the ICLR 24 submission entitled "Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation".
Python
35
star
13

Activity-Trajectory-Generation

The official implementation of "Activity Trajectory Generation via Modeling Spatiotemporal Dynamics"
Python
27
star
14

ACL24-EconAgent

Python
26
star
15

Collective-Mobility-Model

C++
25
star
16

MBGCN

Python
25
star
17

OD_benckmark

The benchmark related to the survey: An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques
25
star
18

PIML

The official PyTorch implementation of "Physics-infused Machine Learning for Crowd Simulation" (KDD'22)
Python
21
star
19

road-planning-for-slums

A deep reinforcement learning (DRL) based approach for slum upgrading. (KDD' 23)
Python
20
star
20

KSTDiff-Urban-flow-generation

Official implementation of "Towards Generative Modeling of Urban Flow through Knowledge-enhanced Denoising Diffusion"(SIGSPATIAL'23)
Python
17
star
21

NetworkTrafficGeneration

Python
16
star
22

Urban-Cup-2023

Urban Cup 2023
15
star
23

WTG-DVR

The official implementation of "DVR: Micro-Video Recommendation Optimizing Watch-Time-Gain under Duration Bias" (MM '22)
Python
15
star
24

Activity-Simulation-SAND

The official PyTorch implementation of "Learning to Simulate Daily Activities via Modeling Dynamic Human Needs" (WWW'23)
Python
14
star
25

Graph-Denoising-SocialRec

The official implementation of "Robust Preference-Guided Denoising for Graph based Social Recommendation" (WWW'23)
Python
14
star
26

City-Camera-Trajectory-Data

City-scale Vehicle Trajectory Data From Traffic Camera Videos
Jupyter Notebook
14
star
27

UrbanKG-KnowCL

Knowledge-infused Contrastive Learning for Urban Imagery-based Socioeconomic Prediction
Python
13
star
28

moss

MOSS: MObility Simulation System
Cuda
13
star
29

DiskNet

Official implementation for "Predicting Long-term Dynamics of Complex Networks via Identifying Skeleton in Hyperbolic Space" (KDD2024)
Python
13
star
30

PateGail

Python
12
star
31

Cam-Traj-Rec

Official implementation of "Spatio-Temporal Vehicle Trajectory Recovery on Road Network Based on Traffic Camera Video Data"(in KDD 2022)
Python
11
star
32

CityBench

CityBench: Evaluating the Capabilities of Large Language Model as World Model
Python
11
star
33

UrbanKG-KnowSite

KnowSite: Leveraging Urban Knowledge Graph for Site Selection
Python
11
star
34

pycityagent

OpenCity | City Agent Python SDK
Python
10
star
35

TrajSynVAE

Python
10
star
36

CFChurn

Python
10
star
37

SPDiff

Python
10
star
38

UGI

Urban Generative Intelligence (UGI): A Foundational Platform for Embodied Agent and Future City
10
star
39

DeepMobility

The official implementation of the manuscript Learning the complexity of urban mobility with deep generative collaboration network.
Python
10
star
40

MMVC_de_com

The released dataset and the official implementation of "Vehicle Trajectory Recovery on Road Network Based on Traffic Camera Video Data"
10
star
41

AMCNet

The official PyTorch implementation of "An Attentional Multi-scale Co-evolving Model for Dynamic Link Prediction" (TheWebConf'23)
Python
9
star
42

Adaptive-Information-Dynamic-Model

Jupyter Notebook
9
star
43

SIRI

The official PyTorch implementation of "Causal Learning Empowered OD Prediction for Urban Planning" (CIKM 2022).
Python
9
star
44

HENCE

The official implementation of AAAI 2024 paper: Estimating On-road Transportation Carbon Emissions from Open Data of Road Network and Origin-destination Flow Data
Python
9
star
45

DRL-Rumor-Mitigation

Python
9
star
46

Large-Scale-MARL-GATMF

Python
7
star
47

MetroGNN

Python
7
star
48

pycitysim

[Archived] Move to pycitydata
Python
7
star
49

DISGCN

We release two datasets for social recommendation, along with the implementation of DISGCN model.
7
star
50

ODForecasting

Python
6
star
51

NMTR

Python
6
star
52

Mobile-Traffic-Prediction-sigspatial23

The official implementation of "Empowering Spatial Knowledge Graph for Mobile Traffic Prediction" (Sigspatial'23)
Python
6
star
53

KG-socioeconomic-indicator-prediction

Official implementation of "Hierarchical Knowledge Graph Learning Enabled Socioeconomic Indicator Prediction in Location-Based Social Network"(WWW'23)
Python
6
star
54

CommutingODGen-Dataset

Python
6
star
55

STAGE

The pytorch implementation of "Spatiotemporal-aware Session-based Recommendation with Graph Neural Networks" (CIKM 2022).
Python
6
star
56

POEM

The official PyTorch implementation of our paper, "Modeling the Effect of Persuasion Factor on User Decision for Recommendation" (SIGKDD'22).
Python
5
star
57

Mobility-Simulation-System

SIGSPATIAL 2023: A City-level High Performance Spatio-temporal Mobility Simulation System
Go
5
star
58

AgentMove

AgentMove: Predicting Human Mobility Anywhere Using Large Language Model based Agentic Framework
5
star
59

LIMP

LIMP: Large Language Model Enhanced Intent-aware Mobility Prediction
5
star
60

RecSys2023-SINE

The official code repository of our RecSys 2023 paper.
4
star
61

FRAME

Python
4
star
62

G2DBP

Learning to Solve Grouped 2D Bin Packing Problems in Manufacturing Industry
Python
4
star
63

MSC

The official PyTorch implementation and dataset of "Community Value Prediction in Social E-commerce" (WebConf '21)
Python
4
star
64

BGGN

C++
4
star
65

PlanBench

Python
4
star
66

SIGIR24-FRec

Python
4
star
67

generate-od-pubtools

Python
4
star
68

GRAPE

Python
3
star
69

ResInf

This repo contains the codes and data for our submitted Nature Communications paper under review: Deep learning resilience inference for complex networked systems.
Python
3
star
70

MAG-Customer-Value-Prediction

Open Code for WWW21-Predicting Customer Value with Social Relationships via Motif-based Graph Attention Networks
Python
3
star
71

DeepMove

Python
3
star
72

WWW2023-DFAR

Python
3
star
73

mosstool

The Toolbox of MObility Simulation System
Python
3
star
74

Anonymous-OpenCity

OpenCity: A Scalable Platform to Simulate Urban Activities with Massive LLM Agents
Python
2
star
75

Social-E-Commerce-Dataset

User-behavior dataset and social-network dataset of social e-commerce website.
2
star
76

WWW2024-Modality-Debiasing

Python
2
star
77

DPLink

Python
2
star
78

ODPrediction

Python
2
star
79

SlowFastSeparation

Python
2
star
80

DCN

Python
2
star
81

learn-to-select

Code for the EURO Meets NeurIPS 2022 Vehicle Routing Competition
C++
2
star
82

GenNet_scientific_data

The repository offers "GenNet" (an interactive simulator that generates a Synthetic Data Ecosystem for Mobile Communication Networks) along with Synthetic Data (including the user data, the wireless environment data, and the network performance data).
Python
2
star
83

ODConstruction

Python
2
star
84

CDGON-KDD24

Python
2
star
85

KDD2023-ID546-UrbanInfra

Python
2
star
86

VOLUNTEER

Python
2
star
87

moss-opt-showcases

Some Showcases based on MOSS
Jupyter Notebook
2
star
88

COLA

Python
2
star
89

TDNetGen

Python
2
star
90

moss-benchmark

[NeurIPS 2024 Dataset and Benchmark] Transportation System Optimization using MOSS
Python
2
star
91

cityproto

The protobuf-driven data structure definition for MOSS, OpenCity, CityBench, e.t.c.
Python
2
star
92

CityGPT

CityGPT: Empowering Urban Spatial Cognition of Large Language Models
2
star
93

CAPE

The official implementation of "Persuade to Click: Context-aware Persuasion Model for Online Textual Advertisement"
1
star
94

KGDA

dataset and code of KGDA
1
star
95

TECRL

Python
1
star
96

DeepSTN

Python
1
star
97

UKGC

Python
1
star
98

citystreetview

[MOVE TO pycitysim] OpenCity | city street view collection helper Python package
Python
1
star
99

STTF

Python
1
star
100

LLM-Agent-Based-Modeling-and-Simulation

1
star