• Stars
    star
    628
  • Rank 71,541 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created almost 6 years ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Docker image with Uvicorn managed by Gunicorn for high-performance web applications in Python with performance auto-tuning.

Test Deploy

Supported tags and respective Dockerfile links

Discouraged tags

To learn more about why Alpine images are discouraged for Python read the note at the end: 🚨 Alpine Python Warning.

Deprecated tags

🚨 These tags are no longer supported or maintained, they are removed from the GitHub repository, but the last version pushed is still available in Docker Hub.

  • python3.6
  • python3.6-alpine3.8

The last versions with date tags for Python 3.6 are:

  • python3.6-2022-11-25
  • python3.6-alpine3.8-2022-11-25

Note: There are tags for each build date. If you need to "pin" the Docker image version you use, you can select one of those tags. E.g. tiangolo/uvicorn-gunicorn:python3.7-2019-10-15.

uvicorn-gunicorn

Docker image with Uvicorn managed by Gunicorn for high-performance web applications in Python with performance auto-tuning. Optionally in a slim version or based on Alpine Linux.

GitHub repo: https://github.com/tiangolo/uvicorn-gunicorn-docker

Docker Hub image: https://hub.docker.com/r/tiangolo/uvicorn-gunicorn/

Description

Python web applications running with Uvicorn (using the "ASGI" specification for Python asynchronous web applications) have shown to have some of the best performances, as measured by third-party benchmarks.

The achievable performance is on par with (and in many cases superior to) Go and Node.js frameworks.

This image has an auto-tuning mechanism included to start a number of worker processes based on the available CPU cores. That way you can just add your code and get high performance automatically, which is useful in simple deployments.

🚨 WARNING: You Probably Don't Need this Docker Image

You are probably using Kubernetes or similar tools. In that case, you probably don't need this image (or any other similar base image). You are probably better off building a Docker image from scratch as explained in the docs for FastAPI in Containers - Docker: Build a Docker Image for FastAPI, that same process and ideas could be applied to other ASGI frameworks.


If you have a cluster of machines with Kubernetes, Docker Swarm Mode, Nomad, or other similar complex system to manage distributed containers on multiple machines, then you will probably want to handle replication at the cluster level instead of using a process manager (like Gunicorn with Uvicorn workers) in each container, which is what this Docker image does.

In those cases (e.g. using Kubernetes) you would probably want to build a Docker image from scratch, installing your dependencies, and running a single Uvicorn process instead of this image.

For example, your Dockerfile could look like:

FROM python:3.9

WORKDIR /code

COPY ./requirements.txt /code/requirements.txt

RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt

COPY ./app /code/app

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]

You can read more about this in the FastAPI documentation about: FastAPI in Containers - Docker as the same ideas would apply to other ASGI frameworks.

When to Use this Docker Image

A Simple App

You could want a process manager like Gunicorn running Uvicorn workers in the container if your application is simple enough that you don't need (at least not yet) to fine-tune the number of processes too much, and you can just use an automated default, and you are running it on a single server, not a cluster.

Docker Compose

You could be deploying to a single server (not a cluster) with Docker Compose, so you wouldn't have an easy way to manage replication of containers (with Docker Compose) while preserving the shared network and load balancing.

Then you could want to have a single container with a Gunicorn process manager starting several Uvicorn worker processes inside, as this Docker image does.

Prometheus and Other Reasons

You could also have other reasons that would make it easier to have a single container with multiple processes instead of having multiple containers with a single process in each of them.

For example (depending on your setup) you could have some tool like a Prometheus exporter in the same container that should have access to each of the requests that come.

In this case, if you had multiple containers, by default, when Prometheus came to read the metrics, it would get the ones for a single container each time (for the container that handled that particular request), instead of getting the accumulated metrics for all the replicated containers.

Then, in that case, it could be simpler to have one container with multiple processes, and a local tool (e.g. a Prometheus exporter) on the same container collecting Prometheus metrics for all the internal processes and exposing those metrics on that single container.


Read more about it all in the FastAPI documentation about: FastAPI in Containers - Docker, as the same ideas would apply to any other ASGI framework.

Technical Details

Uvicorn

Uvicorn is a lightning-fast "ASGI" server.

It runs asynchronous Python web code in a single process.

Gunicorn

You can use Gunicorn to start and manage multiple Uvicorn worker processes.

That way, you get the best of concurrency and parallelism in simple deployments.

tiangolo/uvicorn-gunicorn

This image will set a sensible configuration based on the server it is running on (the amount of CPU cores available) without making sacrifices.

It has sensible defaults, but you can configure it with environment variables or override the configuration files.

There is also a slim version and another one based on Alpine Linux. If you want one of those, use one of the tags from above.

Frameworks

This image was created to be the base image for:

But could be used as the base image to run any Python web application that uses the ASGI specification.

If you are creating a new Starlette web application you should use tiangolo/uvicorn-gunicorn-starlette instead.

If you are creating a new FastAPI web application you should use tiangolo/uvicorn-gunicorn-fastapi instead.

Note: FastAPI is based on Starlette and adds several features on top of it. Useful for APIs and other cases: data validation, data conversion, documentation with OpenAPI, dependency injection, security/authentication and others.

Note: Unless you are doing something more technically advanced, you probably should be using Starlette with tiangolo/uvicorn-gunicorn-starlette or FastAPI with tiangolo/uvicorn-gunicorn-fastapi.

How to use

You don't need to clone the GitHub repo.

You can use this image as a base image for other images.

Assuming you have a file requirements.txt, you could have a Dockerfile like this:

FROM tiangolo/uvicorn-gunicorn:python3.11

COPY ./requirements.txt /app/requirements.txt

RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt

COPY ./app /app

It will expect a file at /app/app/main.py.

Or otherwise a file at /app/main.py.

And will expect it to contain a variable app with your "ASGI" application.

Then you can build your image from the directory that has your Dockerfile, e.g:

docker build -t myimage ./
  • Run a container based on your image:
docker run -d --name mycontainer -p 80:80 myimage

You should be able to check it in your Docker container's URL, for example: http://192.168.99.100/ or http://127.0.0.1/ (or equivalent, using your Docker host).

Dependencies and packages

You will probably also want to add any dependencies for your app and pin them to a specific version, probably including Uvicorn and Gunicorn.

This way you can make sure your app always works as expected.

You could install packages with pip commands in your Dockerfile, using a requirements.txt, or even using Poetry.

And then you can upgrade those dependencies in a controlled way, running your tests, making sure that everything works, but without breaking your production application if some new version is not compatible.

Using Poetry

Here's a small example of one of the ways you could install your dependencies making sure you have a pinned version for each package.

Let's say you have a project managed with Poetry, so, you have your package dependencies in a file pyproject.toml. And possibly a file poetry.lock.

Then you could have a Dockerfile using Docker multi-stage building with:

FROM python:3.9 as requirements-stage

WORKDIR /tmp

RUN pip install poetry

COPY ./pyproject.toml ./poetry.lock* /tmp/

RUN poetry export -f requirements.txt --output requirements.txt --without-hashes

FROM tiangolo/uvicorn-gunicorn:python3.11

COPY --from=requirements-stage /tmp/requirements.txt /app/requirements.txt

RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt

COPY ./app /app

That will:

  • Install poetry and configure it for running inside of the Docker container.
  • Copy your application requirements.
    • Because it uses ./poetry.lock* (ending with a *), it won't crash if that file is not available yet.
  • Install the dependencies.
  • Then copy your app code.

It's important to copy the app code after installing the dependencies, that way you can take advantage of Docker's cache. That way it won't have to install everything from scratch every time you update your application files, only when you add new dependencies.

This also applies for any other way you use to install your dependencies. If you use a requirements.txt, copy it alone and install all the dependencies on the top of the Dockerfile, and add your app code after it.

Advanced usage

Environment variables

These are the environment variables that you can set in the container to configure it and their default values:

MODULE_NAME

The Python "module" (file) to be imported by Gunicorn, this module would contain the actual application in a variable.

By default:

  • app.main if there's a file /app/app/main.py or
  • main if there's a file /app/main.py

For example, if your main file was at /app/custom_app/custom_main.py, you could set it like:

docker run -d -p 80:80 -e MODULE_NAME="custom_app.custom_main" myimage

VARIABLE_NAME

The variable inside of the Python module that contains the ASGI application.

By default:

  • app

For example, if your main Python file has something like:

from fastapi import FastAPI

api = FastAPI()

@api.get("/")
def read_root():
    return {"message": "Hello world!"}

In this case api would be the variable with the "ASGI application". You could set it like:

docker run -d -p 80:80 -e VARIABLE_NAME="api" myimage

APP_MODULE

The string with the Python module and the variable name passed to Gunicorn.

By default, set based on the variables MODULE_NAME and VARIABLE_NAME:

  • app.main:app or
  • main:app

You can set it like:

docker run -d -p 80:80 -e APP_MODULE="custom_app.custom_main:api" myimage

GUNICORN_CONF

The path to a Gunicorn Python configuration file.

By default:

  • /app/gunicorn_conf.py if it exists
  • /app/app/gunicorn_conf.py if it exists
  • /gunicorn_conf.py (the included default)

You can set it like:

docker run -d -p 80:80 -e GUNICORN_CONF="/app/custom_gunicorn_conf.py" myimage

You can use the config file from this image as a starting point for yours.

WORKERS_PER_CORE

This image will check how many CPU cores are available in the current server running your container.

It will set the number of workers to the number of CPU cores multiplied by this value.

By default:

  • 1

You can set it like:

docker run -d -p 80:80 -e WORKERS_PER_CORE="3" myimage

If you used the value 3 in a server with 2 CPU cores, it would run 6 worker processes.

You can use floating point values too.

So, for example, if you have a big server (let's say, with 8 CPU cores) running several applications, and you have an ASGI application that you know won't need high performance. And you don't want to waste server resources. You could make it use 0.5 workers per CPU core. For example:

docker run -d -p 80:80 -e WORKERS_PER_CORE="0.5" myimage

In a server with 8 CPU cores, this would make it start only 4 worker processes.

Note: By default, if WORKERS_PER_CORE is 1 and the server has only 1 CPU core, instead of starting 1 single worker, it will start 2. This is to avoid bad performance and blocking applications (server application) on small machines (server machine/cloud/etc). This can be overridden using WEB_CONCURRENCY.

MAX_WORKERS

Set the maximum number of workers to use.

You can use it to let the image compute the number of workers automatically but making sure it's limited to a maximum.

This can be useful, for example, if each worker uses a database connection and your database has a maximum limit of open connections.

By default it's not set, meaning that it's unlimited.

You can set it like:

docker run -d -p 80:80 -e MAX_WORKERS="24" myimage

This would make the image start at most 24 workers, independent of how many CPU cores are available in the server.

WEB_CONCURRENCY

Override the automatic definition of number of workers.

By default:

  • Set to the number of CPU cores in the current server multiplied by the environment variable WORKERS_PER_CORE. So, in a server with 2 cores, by default it will be set to 2.

You can set it like:

docker run -d -p 80:80 -e WEB_CONCURRENCY="2" myimage

This would make the image start 2 worker processes, independent of how many CPU cores are available in the server.

HOST

The "host" used by Gunicorn, the IP where Gunicorn will listen for requests.

It is the host inside of the container.

So, for example, if you set this variable to 127.0.0.1, it will only be available inside the container, not in the host running it.

It's is provided for completeness, but you probably shouldn't change it.

By default:

  • 0.0.0.0

PORT

The port the container should listen on.

If you are running your container in a restrictive environment that forces you to use some specific port (like 8080) you can set it with this variable.

By default:

  • 80

You can set it like:

docker run -d -p 80:8080 -e PORT="8080" myimage

BIND

The actual host and port passed to Gunicorn.

By default, set based on the variables HOST and PORT.

So, if you didn't change anything, it will be set by default to:

  • 0.0.0.0:80

You can set it like:

docker run -d -p 80:8080 -e BIND="0.0.0.0:8080" myimage

LOG_LEVEL

The log level for Gunicorn.

One of:

  • debug
  • info
  • warning
  • error
  • critical

By default, set to info.

If you need to squeeze more performance sacrificing logging, set it to warning, for example:

You can set it like:

docker run -d -p 80:8080 -e LOG_LEVEL="warning" myimage

WORKER_CLASS

The class to be used by Gunicorn for the workers.

By default, set to uvicorn.workers.UvicornWorker.

The fact that it uses Uvicorn is what allows using ASGI applications like FastAPI and Starlette, and that is also what provides the maximum performance.

You probably shouldn't change it.

But if for some reason you need to use the alternative Uvicorn worker: uvicorn.workers.UvicornH11Worker you can set it with this environment variable.

You can set it like:

docker run -d -p 80:8080 -e WORKER_CLASS="uvicorn.workers.UvicornH11Worker" myimage

TIMEOUT

Workers silent for more than this many seconds are killed and restarted.

Read more about it in the Gunicorn docs: timeout.

By default, set to 120.

Notice that Uvicorn and ASGI frameworks like FastAPI and Starlette are async, not sync. So it's probably safe to have higher timeouts than for sync workers.

You can set it like:

docker run -d -p 80:8080 -e TIMEOUT="20" myimage

KEEP_ALIVE

The number of seconds to wait for requests on a Keep-Alive connection.

Read more about it in the Gunicorn docs: keepalive.

By default, set to 2.

You can set it like:

docker run -d -p 80:8080 -e KEEP_ALIVE="20" myimage

GRACEFUL_TIMEOUT

Timeout for graceful workers restart.

Read more about it in the Gunicorn docs: graceful-timeout.

By default, set to 120.

You can set it like:

docker run -d -p 80:8080 -e GRACEFUL_TIMEOUT="20" myimage

ACCESS_LOG

The access log file to write to.

By default "-", which means stdout (print in the Docker logs).

If you want to disable ACCESS_LOG, set it to an empty value.

For example, you could disable it with:

docker run -d -p 80:8080 -e ACCESS_LOG= myimage

ERROR_LOG

The error log file to write to.

By default "-", which means stderr (print in the Docker logs).

If you want to disable ERROR_LOG, set it to an empty value.

For example, you could disable it with:

docker run -d -p 80:8080 -e ERROR_LOG= myimage

GUNICORN_CMD_ARGS

Any additional command line settings for Gunicorn can be passed in the GUNICORN_CMD_ARGS environment variable.

Read more about it in the Gunicorn docs: Settings.

These settings will have precedence over the other environment variables and any Gunicorn config file.

For example, if you have a custom TLS/SSL certificate that you want to use, you could copy them to the Docker image or mount them in the container, and set --keyfile and --certfile to the location of the files, for example:

docker run -d -p 80:8080 -e GUNICORN_CMD_ARGS="--keyfile=/secrets/key.pem --certfile=/secrets/cert.pem" -e PORT=443 myimage

Note: instead of handling TLS/SSL yourself and configuring it in the container, it's recommended to use a "TLS Termination Proxy" like Traefik. You can read more about it in the FastAPI documentation about HTTPS.

PRE_START_PATH

The path where to find the pre-start script.

By default, set to /app/prestart.sh.

You can set it like:

docker run -d -p 80:8080 -e PRE_START_PATH="/custom/script.sh" myimage

Custom Gunicorn configuration file

The image includes a default Gunicorn Python config file at /gunicorn_conf.py.

It uses the environment variables declared above to set all the configurations.

You can override it by including a file in:

  • /app/gunicorn_conf.py
  • /app/app/gunicorn_conf.py
  • /gunicorn_conf.py

Custom /app/prestart.sh

If you need to run anything before starting the app, you can add a file prestart.sh to the directory /app. The image will automatically detect and run it before starting everything.

For example, if you want to add Alembic SQL migrations (with SQLALchemy), you could create a ./app/prestart.sh file in your code directory (that will be copied by your Dockerfile) with:

#! /usr/bin/env bash

# Let the DB start
sleep 10;
# Run migrations
alembic upgrade head

and it would wait 10 seconds to give the database some time to start and then run that alembic command.

If you need to run a Python script before starting the app, you could make the /app/prestart.sh file run your Python script, with something like:

#! /usr/bin/env bash

# Run custom Python script before starting
python /app/my_custom_prestart_script.py

You can customize the location of the prestart script with the environment variable PRE_START_PATH described above.

Development live reload

The default program that is run is at /start.sh. It does everything described above.

There's also a version for development with live auto-reload at:

/start-reload.sh

Details

For development, it's useful to be able to mount the contents of the application code inside of the container as a Docker "host volume", to be able to change the code and test it live, without having to build the image every time.

In that case, it's also useful to run the server with live auto-reload, so that it re-starts automatically at every code change.

The additional script /start-reload.sh runs Uvicorn alone (without Gunicorn) and in a single process.

It is ideal for development.

Usage

For example, instead of running:

docker run -d -p 80:80 myimage

You could run:

docker run -d -p 80:80 -v $(pwd):/app myimage /start-reload.sh
  • -v $(pwd):/app: means that the directory $(pwd) should be mounted as a volume inside of the container at /app.
    • $(pwd): runs pwd ("print working directory") and puts it as part of the string.
  • /start-reload.sh: adding something (like /start-reload.sh) at the end of the command, replaces the default "command" with this one. In this case, it replaces the default (/start.sh) with the development alternative /start-reload.sh.

Development live reload - Technical Details

As /start-reload.sh doesn't run with Gunicorn, any of the configurations you put in a gunicorn_conf.py file won't apply.

But these environment variables will work the same as described above:

  • MODULE_NAME
  • VARIABLE_NAME
  • APP_MODULE
  • HOST
  • PORT
  • LOG_LEVEL

🚨 Alpine Python Warning

In short: You probably shouldn't use Alpine for Python projects, instead use the slim Docker image versions.


Do you want more details? Continue reading 👇

Alpine is more useful for other languages where you build a static binary in one Docker image stage (using multi-stage Docker building) and then copy it to a simple Alpine image, and then just execute that binary. For example, using Go.

But for Python, as Alpine doesn't use the standard tooling used for building Python extensions, when installing packages, in many cases Python (pip) won't find a precompiled installable package (a "wheel") for Alpine. And after debugging lots of strange errors you will realize that you have to install a lot of extra tooling and build a lot of dependencies just to use some of these common Python packages. 😩

This means that, although the original Alpine image might have been small, you end up with a an image with a size comparable to the size you would have gotten if you had just used a standard Python image (based on Debian), or in some cases even larger. 🤯

And in all those cases, it will take much longer to build, consuming much more resources, building dependencies for longer, and also increasing its carbon footprint, as you are using more CPU time and energy for each build. 🌳

If you want slim Python images, you should instead try and use the slim versions that are still based on Debian, but are smaller. 🤓

Tests

All the image tags, configurations, environment variables and application options are tested.

Release Notes

Latest Changes

0.7.0

The highlights of this release are:

  • Support for Python 3.10 and 3.11.
  • Deprecation of Python 3.6.
    • The last Python 3.6 image tag was pushed and is available in Docker Hub, but it won't be updated or maintained anymore.
    • The last image with a date tag is python3.6-2022-11-25.
  • Upgraded versions of all the dependencies.

Features

  • Add support for Python 3.11. PR #159 by @tiangolo.
  • ⬆️ Upgrade Uvicorn version. PR #161 by @tiangolo.
  • Add support for Python 3.10. PR #99 by @tiangolo.
  • ⬆️ Upgrade Uvicorn to the last version supporting Python 3.6. PR #155 by @tiangolo.
  • Add Python 3.9 and Alpine Python 3.9. PR #52 by @graue70.
  • ⬆️ Install uvicorn[standard] to include uvloop and Gunicorn support. PR #54 by @tiangolo.

Breaking Changes

Docs

  • ✏️ Fix typo, delete repeated line in README. PR #147 by @jiyeonseo.
  • 📝 Add note to discourage Alpine with Python. PR #96 by @tiangolo.
  • 📝 Add warning for Kubernetes, when to use this image. PR #95 by @tiangolo.
  • ✏️ Fix typo duplicate "Note" in Readme. PR #92 by @tiangolo.
  • ✏️ Fix typo (type annotation) in tests. PR #55 by @tiangolo.

Internal

0.6.0

  • Add docs about installing and pinning dependencies. PR #41.
  • Add slim version. PR #40.
  • Remove leftover unneeded config for tests. PR #39.
  • Add extra configs, tests, and docs for:
    • WORKER_CLASS
    • TIMEOUT
    • KEEP_ALIVE
    • GRACEFUL_TIMEOUT
    • ACCESS_LOG
    • ERROR_LOG
    • GUNICORN_CMD_ARGS
    • MAX_WORKERS
    • PR #38
  • Set up CI using GitHub actions, they provide more free instances, so builds finish faster (4 min vs 9 min). PR #37.
  • Add support for Python 3.8. PR #36.
  • Refactor tests to remove custom testing Dockerfiles, generate them during tests. PR #35.
  • Refactor and simplify build process to reduce code duplication. PR #34.
  • Disable pip cache during installation with --no-cache-dir. PR #13 by @pmav99.
  • Migrate local development from Pipenv to Poetry. PR #31.
  • Add tests and docs for custom PRE_START_PATH env var. PR #30.
  • Add support for custom PRE_START_PATH env var. PR #12 by @mgfinch.

0.5.0

  • Refactor tests to use env vars and add image tags for each build date, like tiangolo/uvicorn-gunicorn:python3.7-2019-10-15. PR #15.
  • Update Gunicorn worker heartbeat directory to /dev/shm to improve performance. PR #9 by @wshayes.
  • Upgrade Travis. PR #7.

0.4.0

  • Add support for live auto-reload with an additional custom script /start-reload.sh, check the updated documentation. PR #6.

0.3.0

  • Set WORKERS_PER_CORE by default to 1, as it shows to have the best performance on benchmarks.
  • Make the default web concurrency, when WEB_CONCURRENCY is not set, to a minimum of 2 workers. This is to avoid bad performance and blocking applications (server application) on small machines (server machine/cloud/etc). This can be overridden using WEB_CONCURRENCY. This applies for example in the case where WORKERS_PER_CORE is set to 1 (the default) and the server has only 1 CPU core. PR #5.

0.2.0

  • Make /start.sh run independently, reading and generating used default environment variables. And remove /entrypoint.sh as it doesn't modify anything in the system, only reads environment variables. PR #4.

0.1.2

  • Whenever this image is built (and each of its tags/versions), trigger a build for the children images (FastAPI and Starlette).

0.1.0

  • Add support for /app/prestart.sh.

License

This project is licensed under the terms of the MIT license.

More Repositories

1

fastapi

FastAPI framework, high performance, easy to learn, fast to code, ready for production
Python
73,897
star
2

full-stack-fastapi-template

Full stack, modern web application template. Using FastAPI, React, SQLModel, PostgreSQL, Docker, GitHub Actions, automatic HTTPS and more.
TypeScript
24,890
star
3

typer

Typer, build great CLIs. Easy to code. Based on Python type hints.
Python
14,943
star
4

sqlmodel

SQL databases in Python, designed for simplicity, compatibility, and robustness.
Python
13,694
star
5

uwsgi-nginx-flask-docker

Docker image with uWSGI and Nginx for Flask applications in Python running in a single container.
Python
2,986
star
6

uvicorn-gunicorn-fastapi-docker

Docker image with Uvicorn managed by Gunicorn for high-performance FastAPI web applications in Python with performance auto-tuning.
Python
2,699
star
7

asyncer

Asyncer, async and await, focused on developer experience.
Python
1,517
star
8

pydantic-sqlalchemy

Tools to convert SQLAlchemy models to Pydantic models
Python
1,173
star
9

nginx-rtmp-docker

Docker image with Nginx using the nginx-rtmp-module module for live multimedia (video) streaming.
Dockerfile
1,110
star
10

dockerswarm.rocks

Docker Swarm mode rocks! Ideas, tools and recipes. Get a production-ready, distributed, HTTPS served, cluster in minutes, not weeks.
Python
1,093
star
11

uwsgi-nginx-docker

Docker image with uWSGI and Nginx for applications in Python (as Flask) in a single container.
Python
646
star
12

full-stack

Full stack, modern web application generator. Using Flask, PostgreSQL DB, Docker, Swagger, automatic HTTPS and more.
Python
523
star
13

meinheld-gunicorn-flask-docker

Docker image with Meinheld and Gunicorn for Flask applications in Python.
Python
486
star
14

full-stack-fastapi-couchbase

Full stack, modern web application generator. Using FastAPI, Couchbase as database, Docker, automatic HTTPS and more.
Python
440
star
15

typer-cli

Run Typer scripts with completion, without having to create a package, using Typer CLI.
Python
367
star
16

poetry-version-plugin

Poetry plugin for dynamically extracting the package version from a __version__ variable or a Git tag.
Python
361
star
17

fastapi-cli

Run and manage FastAPI apps from the command line with FastAPI CLI. 🚀
Python
287
star
18

blog-posts

Blog posts and related code by Sebastián Ramírez (@tiangolo)
Python
273
star
19

uvicorn-gunicorn-starlette-docker

Docker image with Uvicorn managed by Gunicorn for high-performance Starlette web applications in Python with performance auto-tuning.
Python
182
star
20

latest-changes

A GitHub Action to add latest changes after each PR merged automatically
Python
172
star
21

babun-docker

Use Docker Toolbox with Babun (Cygwin) in Windows
Shell
170
star
22

meinheld-gunicorn-docker

Docker image with Meinheld managed by Gunicorn for high-performance WSGI (Flask, Django, etc) web applications in Python with performance auto-tuning.
Python
165
star
23

docker-with-compose

Docker image with Docker Compose installed for CI.
Shell
158
star
24

node-frontend

Instrutctions to buid a frontend Docker image built with Node.js and then served with Nginx. Previously a Docker image.
Dockerfile
137
star
25

flask-frontend-docker

Minimal project generator with a Flask backend, a modern frontend (Vue, React or Angular), a Traefik load balancer with HTTPS, all based on Docker.
Vue
130
star
26

python-machine-learning-docker

Docker image with Python 3.6 and 3.7 using Conda, with CUDA variants. To serve as base image for Machine Learning projects.
Dockerfile
84
star
27

uvicorn-gunicorn-machine-learning-docker

Docker image for high-performance Machine Learning web applications. With Uvicorn managed by Gunicorn in Python 3.7 and 3.6, using Conda, with CUDA and TensorFlow variants.
Python
67
star
28

issue-manager

Automatically close issues that have a label, after a custom delay, if no one replies back.
Python
62
star
29

full-stack-flask-couchbase

Full stack, modern web application generator. Using Flask, Couchbase as database, Docker, Swagger, automatic HTTPS and more.
Python
59
star
30

label-approved

Label a Pull Request after a number of approvals
Python
34
star
31

full-stack-flask-couchdb

Full stack, modern web application generator. Using Flask, CouchDB as database, Docker, Swagger, automatic HTTPS and more.
Python
31
star
32

tiangolo

16
star
33

github-actions-sandbox

Not useful for you. It's just a sandbox GitHub repo for me to try out stuff and develop GitHub Actions.
Python
16
star
34

tiangolo.com

Python
16
star
35

docker-auto-labels

Generate each Docker constraint label in random nodes in the cluster.
Python
15
star
36

angular-docker-multi-stage-example

Angular in Docker with Nginx, supporting environments, built with multi-stage Docker builds
15
star
37

ngx-http-client

Angular (4.3+) HttpClientModule with parameter encodings compatible with back ends (Node.js, Python, PHP, etc)
TypeScript
11
star
38

compose-to-rancher

Convert Docker Compose V2 to Rancher compatible Docker Compose V1
Python
10
star
39

markdown-include-variants

Markdown extension to expand directives to include source example files to also include their variants. Only useful to tiangolo's projets. Don't use it. 😅
Python
9
star
40

wunderlist2csv

Convert from Wunderlist backup json file to a CSV file importable by TaskCoach
Python
6
star
41

anaconda_cluster_install

Automatically Install Anaconda Python in a cluster of machines, for a specified user.
Shell
5
star
42

bitbucket_issues_to_redmine_csv

Python
3
star