• Stars
    star
    1,251
  • Rank 37,562 (Top 0.8 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

AttnGAN

Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks by Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, Xiaodong He. (This work was performed when Tao was an intern with Microsoft Research).

Dependencies

python 2.7

Pytorch

In addition, please add the project folder to PYTHONPATH and pip install the following packages:

  • python-dateutil
  • easydict
  • pandas
  • torchfile
  • nltk
  • scikit-image

Data

  1. Download our preprocessed metadata for birds coco and save them to data/
  2. Download the birds image data. Extract them to data/birds/
  3. Download coco dataset and extract the images to data/coco/

Training

  • Pre-train DAMSM models:

    • For bird dataset: python pretrain_DAMSM.py --cfg cfg/DAMSM/bird.yml --gpu 0
    • For coco dataset: python pretrain_DAMSM.py --cfg cfg/DAMSM/coco.yml --gpu 1
  • Train AttnGAN models:

    • For bird dataset: python main.py --cfg cfg/bird_attn2.yml --gpu 2
    • For coco dataset: python main.py --cfg cfg/coco_attn2.yml --gpu 3
  • *.yml files are example configuration files for training/evaluation our models.

Pretrained Model

Sampling

  • Run python main.py --cfg cfg/eval_bird.yml --gpu 1 to generate examples from captions in files listed in "./data/birds/example_filenames.txt". Results are saved to DAMSMencoders/.
  • Change the eval_*.yml files to generate images from other pre-trained models.
  • Input your own sentence in "./data/birds/example_captions.txt" if you wannt to generate images from customized sentences.

Validation

  • To generate images for all captions in the validation dataset, change B_VALIDATION to True in the eval_*.yml. and then run python main.py --cfg cfg/eval_bird.yml --gpu 1
  • We compute inception score for models trained on birds using StackGAN-inception-model.
  • We compute inception score for models trained on coco using improved-gan/inception_score.

Examples generated by AttnGAN [Blog]

bird example coco example

Creating an API

Evaluation code embedded into a callable containerized API is included in the eval\ folder.

Citing AttnGAN

If you find AttnGAN useful in your research, please consider citing:

@article{Tao18attngan,
  author    = {Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, Xiaodong He},
  title     = {AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks},
  Year = {2018},
  booktitle = {{CVPR}}
}

Reference