• Stars
    star
    226
  • Rank 176,514 (Top 4 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Visualization Module for Natural Language Processing

📝 nlplot

nlplot: Analysis and visualization module for Natural Language Processing 📈

Description

Facilitates the visualization of natural language processing and provides quicker analysis

You can draw the following graph

  1. N-gram bar chart
  2. N-gram tree Map
  3. Histogram of the word count
  4. wordcloud
  5. co-occurrence networks
  6. sunburst chart

(Tested in English and Japanese)

Requirement

Installation

pip install nlplot

I've posted on this blog about the specific use. (Japanese)

And, The sample code is also available in the kernel of kaggle. (English)

Quick start - Data Preparation

The column to be analyzed must be a space-delimited string

# sample data
target_col = "text"
texts = [
    "Think rich look poor",
    "When you come to a roadblock, take a detour",
    "When it is dark enough, you can see the stars",
    "Never let your memories be greater than your dreams",
    "Victory is sweetest when you’ve known defeat"
    ]
df = pd.DataFrame({target_col: texts})
df.head()
text
0 Think rich look poor
1 When you come to a roadblock, take a detour
2 When it is dark enough, you can see the stars
3 Never let your memories be greater than your dreams
4 Victory is sweetest when you’ve known defeat

Quick start - Python API

import nlplot
import pandas as pd
import plotly
from plotly.subplots import make_subplots
from plotly.offline import iplot
import matplotlib.pyplot as plt

%matplotlib inline

# target_col as a list type or a string separated by a space.
npt = nlplot.NLPlot(df, target_col='text')

# Stopword calculations can be performed.
stopwords = npt.get_stopword(top_n=30, min_freq=0)

# 1. N-gram bar chart
fig_unigram = npt.bar_ngram(
    title='uni-gram',
    xaxis_label='word_count',
    yaxis_label='word',
    ngram=1,
    top_n=50,
    width=800,
    height=1100,
    color=None,
    horizon=True,
    stopwords=stopwords,
    verbose=False,
    save=False,
)
fig_unigram.show()

fig_bigram = npt.bar_ngram(
    title='bi-gram',
    xaxis_label='word_count',
    yaxis_label='word',
    ngram=2,
    top_n=50,
    width=800,
    height=1100,
    color=None,
    horizon=True,
    stopwords=stopwords,
    verbose=False,
    save=False,
)
fig_bigram.show()


# 2. N-gram tree Map
fig_treemap = npt.treemap(
    title='Tree map',
    ngram=1,
    top_n=50,
    width=1300,
    height=600,
    stopwords=stopwords,
    verbose=False,
    save=False
)
fig_treemap.show()


# 3. Histogram of the word count
fig_histgram = npt.word_distribution(
    title='word distribution',
    xaxis_label='count',
    yaxis_label='',
    width=1000,
    height=500,
    color=None,
    template='plotly',
    bins=None,
    save=False,
)
fig_histgram.show()


# 4. wordcloud
fig_wc = npt.wordcloud(
    width=1000,
    height=600,
    max_words=100,
    max_font_size=100,
    colormap='tab20_r',
    stopwords=stopwords,
    mask_file=None,
    save=False
)
plt.figure(figsize=(15, 25))
plt.imshow(fig_wc, interpolation="bilinear")
plt.axis("off")
plt.show()


# 5. co-occurrence networks
npt.build_graph(stopwords=stopwords, min_edge_frequency=10)
# The number of nodes and edges to which this output is plotted.
# If this number is too large, plotting will take a long time, so adjust the [min_edge_frequency] well.
# >> node_size:70, edge_size:166
fig_co_network = npt.co_network(
    title='Co-occurrence network',
    sizing=100,
    node_size='adjacency_frequency',
    color_palette='hls',
    width=1100,
    height=700,
    save=False
)
iplot(fig_co_network)


# 6. sunburst chart
fig_sunburst = npt.sunburst(
    title='sunburst chart',
    colorscale=True,
    color_continuous_scale='Oryel',
    width=1000,
    height=800,
    save=False
)
fig_sunburst.show()


# other
# The original data frame of the co-occurrence network can also be accessed
display(
    npt.node_df.head(), npt.node_df.shape,
    npt.edge_df.head(), npt.edge_df.shape
)

Document

TBD

Test

cd tests
pytest

Other