📝 nlplot
nlplot: Analysis and visualization module for Natural Language Processing
Description
Facilitates the visualization of natural language processing and provides quicker analysis
You can draw the following graph
- N-gram bar chart
- N-gram tree Map
- Histogram of the word count
- wordcloud
- co-occurrence networks
- sunburst chart
(Tested in English and Japanese)
Requirement
Installation
pip install nlplot
I've posted on this blog about the specific use. (Japanese)
And, The sample code is also available in the kernel of kaggle. (English)
Quick start - Data Preparation
The column to be analyzed must be a space-delimited string
# sample data
target_col = "text"
texts = [
"Think rich look poor",
"When you come to a roadblock, take a detour",
"When it is dark enough, you can see the stars",
"Never let your memories be greater than your dreams",
"Victory is sweetest when you’ve known defeat"
]
df = pd.DataFrame({target_col: texts})
df.head()
text | |
---|---|
0 | Think rich look poor |
1 | When you come to a roadblock, take a detour |
2 | When it is dark enough, you can see the stars |
3 | Never let your memories be greater than your dreams |
4 | Victory is sweetest when you’ve known defeat |
Quick start - Python API
import nlplot
import pandas as pd
import plotly
from plotly.subplots import make_subplots
from plotly.offline import iplot
import matplotlib.pyplot as plt
%matplotlib inline
# target_col as a list type or a string separated by a space.
npt = nlplot.NLPlot(df, target_col='text')
# Stopword calculations can be performed.
stopwords = npt.get_stopword(top_n=30, min_freq=0)
# 1. N-gram bar chart
fig_unigram = npt.bar_ngram(
title='uni-gram',
xaxis_label='word_count',
yaxis_label='word',
ngram=1,
top_n=50,
width=800,
height=1100,
color=None,
horizon=True,
stopwords=stopwords,
verbose=False,
save=False,
)
fig_unigram.show()
fig_bigram = npt.bar_ngram(
title='bi-gram',
xaxis_label='word_count',
yaxis_label='word',
ngram=2,
top_n=50,
width=800,
height=1100,
color=None,
horizon=True,
stopwords=stopwords,
verbose=False,
save=False,
)
fig_bigram.show()
# 2. N-gram tree Map
fig_treemap = npt.treemap(
title='Tree map',
ngram=1,
top_n=50,
width=1300,
height=600,
stopwords=stopwords,
verbose=False,
save=False
)
fig_treemap.show()
# 3. Histogram of the word count
fig_histgram = npt.word_distribution(
title='word distribution',
xaxis_label='count',
yaxis_label='',
width=1000,
height=500,
color=None,
template='plotly',
bins=None,
save=False,
)
fig_histgram.show()
# 4. wordcloud
fig_wc = npt.wordcloud(
width=1000,
height=600,
max_words=100,
max_font_size=100,
colormap='tab20_r',
stopwords=stopwords,
mask_file=None,
save=False
)
plt.figure(figsize=(15, 25))
plt.imshow(fig_wc, interpolation="bilinear")
plt.axis("off")
plt.show()
# 5. co-occurrence networks
npt.build_graph(stopwords=stopwords, min_edge_frequency=10)
# The number of nodes and edges to which this output is plotted.
# If this number is too large, plotting will take a long time, so adjust the [min_edge_frequency] well.
# >> node_size:70, edge_size:166
fig_co_network = npt.co_network(
title='Co-occurrence network',
sizing=100,
node_size='adjacency_frequency',
color_palette='hls',
width=1100,
height=700,
save=False
)
iplot(fig_co_network)
# 6. sunburst chart
fig_sunburst = npt.sunburst(
title='sunburst chart',
colorscale=True,
color_continuous_scale='Oryel',
width=1000,
height=800,
save=False
)
fig_sunburst.show()
# other
# The original data frame of the co-occurrence network can also be accessed
display(
npt.node_df.head(), npt.node_df.shape,
npt.edge_df.head(), npt.edge_df.shape
)
Document
TBD
Test
cd tests
pytest
Other
-
Plotly is used to plot the figure
-
co-occurrence networks is used to calculate the co-occurrence network
-
wordcloud uses the following fonts