CFD_Julia
This repository contains fundamental codes related to CFD that can be included in any graduate level CFD coursework.
Published manuscript
For more details on this work, please refer CFD Julia: A Learning Module Structuring an Introductory Course on Computational Fluid Dynamics (https://www.mdpi.com/2311-5521/4/3/159)
Below is the summary of all codes included in CFD_Julia module.
Index | Description |
---|---|
01 | 1D heat equation: Forward time central space (FTCS) scheme |
02 | 1D heat equation: Third-order Runge-Kutta (RK3) scheme |
03 | 1D heat equation: Crank-Nicolson (CN) scheme |
04 | 1D heat equation: Implicit compact Pade (ICP) scheme |
05 | 1D inviscid Burgers equation: WENO-5 with Dirichlet and periodic boundary condition |
06 | 1D inviscid Burgers equation: CRWENO-5 with Dirichlet and periodic boundary conditions |
07 | 1D inviscid Burgers equation: Flux-splitting approach with WENO-5 |
08 | 1D inviscid Burgers equation: Riemann solver approach with WENO-5 using Rusanov solver |
09 | 1D Euler equations: Roe solver, WENO-5, RK3 for time integration |
10 | 1D Euler equations: HLLC solver, WENO-5, RK3 for time integration |
11 | 1D Euler equations: Rusanov solver, WENO-5, RK3 for time integration |
12 | 2D Poisson equation: Finite difference fast Fourier transform (FFT) based direct solver |
13 | 2D Poisson equation: Spectral fast Fourier transform (FFT) based direct solver |
14 | 2D Poisson equation: Fast sine transform (FST) based direct solver for Dirichlet boundary |
15 | 2D Poisson equation: Gauss-Seidel iterative method |
16 | 2D Poisson equation: Conjugate gradient iterative method |
17 | 2D Poisson equation: V-cycle multigrid iterative method |
18 | 2D incompressible Navier-Stokes equations (cavity flow): Arakawa, FST, RK3 schemes |
19 | 2D incompressible Navier-Stokes equations (vortex merging): Arakawa, FFT, RK3 schemes |
20 | 2D incompressible Navier-Stokes equations (vortex merging): Hybrid RK3/CN approach |
21 | 2D incompressible Navier-Stokes equations (vortex merging): Pseudospectral solver, 3/2 dealiasing, Hybrid RK3/CN approach |
22 | 2D incompressible Navier-Stokes equations (vortex merging): Pseudospectral solver, 2/3 dealiasing, Hybrid RK3/CN approach |