• Stars
    star
    5
  • Rank 2,861,937 (Top 57 %)
  • Language
    Jupyter Notebook
  • Created over 4 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

For this problem, we proposed the use of bidirectional-LSTM’s(Long Short Term Memory) with 1-D CNN layer to classify patient notes at character level and at word level. The 1-D CNN is employed to scale back the training time. In order to improve the performance, we will also feed the network combined word embedding consisting of Pre-trained word2vec 100 dimension word embedding trained on the Twitter ADR Dataset database and character embedding generated by a Char-CNN for Named Entity Recognition