• Stars
    star
    272
  • Rank 151,235 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 8 years ago
  • Updated over 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Continuous control with deep reinforcement learning - Deep Deterministic Policy Gradient (DDPG) algorithm implemented in OpenAI Gym environments

ddpg-aigym

Deep Deterministic Policy Gradient

Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Tensorflow

How to use

git clone https://github.com/stevenpjg/ddpg-aigym.git
cd ddpg-aigym
python main.py

During training

Once trained

Learning Curve

The learning curve for InvertedPendulum-v1 environment.

Dependencies

Features

  • Batch Normalization (improvement in learning speed)
  • Grad-inverter (given in arXiv: arXiv:1511.04143)

Note

To use different environment

experiment= 'InvertedPendulum-v1' #specify environments here

To use batch normalization

is_batch_norm = True #batch normalization switch

Let me know if there are any issues and clarifications regarding hyperparameter tuning.