• Stars
    star
    366
  • Rank 116,547 (Top 3 %)
  • Language
    Python
  • License
    Other
  • Created over 2 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Solution for Waymo Motion Prediction Challenge 2022. Our implementation of MultiPath++

Waymo motion prediction challenge 2022: 3rd place solution (May, 26)

Our implementation of MultiPath++

General Info:

Team behind this solution:

Stepan Konev

Code Usage:

First we need to prepare data for training. The prerender script will convert the original data format into set of .npz files each containing the data for a single target agent. From code folder run

python3 prerender/prerender.py \
    --data-path /path/to/original/data \
    --output-path /output/path/to/prerendered/data \
    --n-jobs 24 \
    --n-shards 1 \
    --shard-id 0 \
    --config configs/prerender.yaml

Rendering is a memory consuming procedure so you may want to use n-shards > 1 and running the script a few times using consecutive shard-id values

Once we have our data prepared we can run the training.

python3 train.py configs/final_RoP_Cov_Single.yaml

If you find this work interesting please ⭐️star and share this repo.

Citation

If you find this work useful please cite us

@misc{https://doi.org/10.48550/arxiv.2206.10041,
  doi = {10.48550/ARXIV.2206.10041},
  url = {https://arxiv.org/abs/2206.10041},
  author = {Konev, Stepan},
  keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {MPA: MultiPath++ Based Architecture for Motion Prediction},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}