• Stars
    star
    538
  • Rank 82,538 (Top 2 %)
  • Language
    Python
  • License
    GNU General Publi...
  • Created over 5 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Multi-person Human Pose Estimation with HRNet in Pytorch

Multi-person Human Pose Estimation with HRNet in PyTorch

This is an unofficial implementation of the paper Deep High-Resolution Representation Learning for Human Pose Estimation.
The code is a simplified version of the official code with the ease-of-use in mind.

The code is fully compatible with the official pre-trained weights and the results are the same of the original implementation (only slight differences on gpu due to CUDA). It supports both Windows and Linux.

This repository provides:

  • A simple HRNet implementation in PyTorch (>=1.0) - compatible with official weights (pose_hrnet_*).
  • A simple class (SimpleHRNet) that loads the HRNet network for the human pose estimation, loads the pre-trained weights, and make human predictions on a single image or a batch of images.
  • Support for "SimpleBaselines" model based on ResNet - compatible with official weights (pose_resnet_*).
  • Support for multi-GPU inference.
  • Add options for retrieving yolo bounding boxes and HRNet heatmaps.
  • NEW Multi-person support with YOLOv3 (enabled by default), YOLOv3-tiny, or YOLOv5 by Ultralytics.
  • A reference code that runs a live demo reading frames from a webcam or a video file.
  • A relatively-simple code for training and testing the HRNet network.
  • A specific script for training the network on the COCO dataset.
  • NEW An updated Jupyter Notebook compatible with Google Colab showcasing how to use this repository.
  • NEW Support for TensorRT (thanks to @gpastal24, see #99 and #100).

If you are interested in HigherHRNet, please look at simple-HigherHRNet

Examples

Class usage

import cv2
from SimpleHRNet import SimpleHRNet

model = SimpleHRNet(48, 17, "./weights/pose_hrnet_w48_384x288.pth")
image = cv2.imread("image.png", cv2.IMREAD_COLOR)

joints = model.predict(image)

The most useful parameters of the __init__ function are:

cnumber of channels (HRNet: 32, 48; PoseResNet: resnet size)
nof_jointsnumber of joints (COCO: 17, MPII: 16)
checkpoint_pathpath of the (official) weights to be loaded
model_name'HRNet' or 'PoseResNet'
resolutionimage resolution, it depends on the loaded weights
multipersonenable multiperson prediction
return_heatmapsthe `predict` method returns also the heatmaps
return_bounding_boxesthe `predict` method returns also the bounding boxes (useful in conjunction with `multiperson`)
max_batch_sizemaximum batch size used in hrnet inference
devicedevice (cpu or cuda)

Running the live demo

From a connected camera:

python scripts/live-demo.py --camera_id 0

From a saved video:

python scripts/live-demo.py --filename video.mp4

For help:

python scripts/live-demo.py --help

Extracting keypoints:

From a saved video:

python scripts/extract-keypoints.py --format csv --filename video.mp4

For help:

python scripts/extract-keypoints.py --help

Converting the model to TensorRT:

Warning: require the installation of TensorRT (see Nvidia website) and onnx. On some platforms, they can be installed with

pip install tensorrt onnx

Converting in FP16:

python scripts/export-tensorrt-model.py --device 0 --half

For help:

python scripts/export-tensorrt-model.py --help

Running the training script

python scripts/train_coco.py

For help:

python scripts/train_coco.py --help

Installation instructions

  • Clone the repository
    git clone https://github.com/stefanopini/simple-HRNet.git

  • Install the required packages
    pip install -r requirements.txt

  • Download the official pre-trained weights from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
    Direct links (official Drive folder, official OneDrive folder):

    Remember to set the parameters of SimpleHRNet accordingly (in particular c, nof_joints, and resolution).

  • For multi-person support:

    • Get YOLOv3:
      • Clone YOLOv3 in the folder ./models/detectors and change the folder name from PyTorch-YOLOv3 to yolo
        OR
      • Update git submodules
        git submodule update --init --recursive
    • Install YOLOv3 required packages
      pip install -r requirements.txt (from folder ./models/detectors/yolo)
    • Download the pre-trained weights running the script download_weights.sh from the weights folder
  • (Optional) Download the COCO dataset and save it in ./datasets/COCO

  • Your folders should look like:

    simple-HRNet
    ├── datasets                (datasets - for training only)
    │  └── COCO                 (COCO dataset)
    ├── losses                  (loss functions)
    ├── misc                    (misc)
    │  └── nms                  (CUDA nms module - for training only)
    ├── models                  (pytorch models)
    │  └── detectors            (people detectors)
    │    └── yolo               (PyTorch-YOLOv3 repository)
    │      ├── ...
    │      └── weights          (YOLOv3 weights)
    ├── scripts                 (scripts)
    ├── testing                 (testing code)
    ├── training                (training code)
    └── weights                 (HRnet weights)
    
  • If you want to run the training script on COCO scripts/train_coco.py, you have to build the nms module first.
    Please note that a linux machine with CUDA is currently required. Build it with either:

    • cd misc; make or
    • cd misc/nms; python setup_linux.py build_ext --inplace

    You may need to add the ./misc/nms directory in the PYTHONPATH variable:
    export PYTHONPATH="<path-to-simple-HRNet>/misc/nms:$PYTHONPATH"

Google Colab notebook

Thanks to the great work of @basicvisual and @wuyenlin, you can also try this repository online on Google Colab. More details and the notebook URL are available in this issue.
Please make sure to make a copy on your own Google Drive and to change the Colab "Runtime type" from CPU to GPU or TPU.