• Stars
    star
    415
  • Rank 104,301 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A faster implementation of PointNet++ based on PyTorch.

Pointnet2.PyTorch

Installation

Requirements

  • Linux (tested on Ubuntu 14.04/16.04)
  • Python 3.6+
  • PyTorch 1.0

Install

Install this library by running the following command:

cd pointnet2
python setup.py install
cd ../

Examples

Here I provide a simple example to use this library in the task of KITTI ourdoor foreground point cloud segmentation, and you could refer to the paper PointRCNN for the details of task description and foreground label generation.

  1. Download the training data from KITTI 3D object detection website and organize the downloaded files as follows:
Pointnet2.PyTorch
β”œβ”€β”€ pointnet2
β”œβ”€β”€ tools
β”‚   β”œβ”€β”€data
β”‚   β”‚  β”œβ”€β”€ KITTI
β”‚   β”‚  β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚  β”‚   β”œβ”€β”€ object
β”‚   β”‚  β”‚   β”‚   β”œβ”€β”€training
β”‚   β”‚  β”‚   β”‚      β”œβ”€β”€calib & velodyne & label_2 & image_2
β”‚   β”‚  train_and_eval.py
  1. Run the following command to train and evaluate:
cd tools
python train_and_eval.py --batch_size 8 --epochs 100 --ckpt_save_interval 2 

Project using this repo:

  • PointRCNN: 3D object detector from raw point cloud.

Acknowledgement