InMemoryDatasets
Documentation
The latest release's Documentation is available via https://sl-solution.github.io/InMemoryDatasets.jl/stable.
Introduction
InMemoryDatasets.jl
is a multithreaded package for data manipulation and is designed for Julia
1.6+ (64bit OS). The core computation engine of the package is a set of customised algorithms developed specifically for columnar tables. The package performance is tuned with two goals in mind, a) low overhead of allowing missing values everywhere, and b) the following priorities - in order of importance:
- Low compilation time
- Memory efficiency
- High performance
we do our best to keep the overall complexity of the package as low as possible to simplify:
- the maintenance of the package
- adding new features to the package
- contributing to the package
See here for some benchmarks.
Features
InMemoryDatasets.jl
has many interesting features, here, we highlight some of our favourites (in no particular order):
- Assigning a named function to a column as its format
- By default, formatted values are used for operations like: displaying, sorting, grouping, joining,...
- Format evaluation is lazy
- Formats don't change the actual values
- Multi-threading across the whole package
- Most functions in
InMemoryDatasets.jl
exploit all cores available toJulia
by default - Disabling parallel computation via passing the
threads = false
keyword argument to functions
- Most functions in
- Powerful row-wise operations
- Support many common operations
- Specialised operations for modifying columns
- Customised row-wise operations for filtering observations /
filter
simply wrapsbyrow
- Unique approach for reshaping data
- Unified syntax for all type of reshaping
- Cover all reshaping functions:
- stacking and un-stacking on single/multiple columns
- wide to long and long to wide reshaping
- transposing and more
- Fast sorting algorithms
- Stable and Unstable
HeapSort
andQuickSort
algorithms - Count sort for integers
- Stable and Unstable
- Compiler friendly grouping algorithms
groupby!
/groupby
to group observation using sorting algorithms - sorted ordergatherby
to group observation using hybrid hash algorithms - observations order- incremental grouping operation for
groupby!
/groupby
, i.e. adding a column at a time
- Efficient joining algorithms
- Preserve the order of observations in the left data set
- Support two methods for joining:
sort-merge
join andhash
join. - Customised columnar-hybrid-hash algorithms for join
- Inequality-kind (non-equi) and range joins for
innerjoin
,contains
,semijoin!
/semijoin
,antijoin!
/antijoin
closejoin!
/closejoin
for non exact match joinupdate!
/update
for updating a master data set with values from a transaction data set
Example
julia> using InMemoryDatasets
julia> g1 = repeat(1:6, inner = 4);
julia> g2 = repeat(1:4, 6);
julia> y = ["d8888b. ", " .d8b. ", "d888888b ", " .d8b. ", "88 `8D ", "d8' `8b ",
"`~~88~~' ", " d8' `8b ", "88 88 ", "88ooo88 ", " 88 ", " 88ooo88 ",
"88 88 ", "88~~~88 ", " 88 ", " 88~~~88 ", "88 .8D ", "88 88 ",
" 88 ", " 88 88 ", "Y8888D' ", "YP YP ", " YP ", " YP YP "];
julia> ds = Dataset(g1 = g1, g2 = g2, y = y)
24×3 Dataset
Row │ g1 g2 y
│ identity identity identity
│ Int64? Int64? String?
─────┼───────────────────────────────
1 │ 1 1 d8888b.
2 │ 1 2 .d8b.
3 │ 1 3 d888888b
4 │ 1 4 .d8b.
5 │ 2 1 88 `8D
6 │ 2 2 d8' `8b
7 │ 2 3 `~~88~~'
8 │ 2 4 d8' `8b
9 │ 3 1 88 88
10 │ 3 2 88ooo88
11 │ 3 3 88
12 │ 3 4 88ooo88
13 │ 4 1 88 88
14 │ 4 2 88~~~88
15 │ 4 3 88
16 │ 4 4 88~~~88
17 │ 5 1 88 .8D
18 │ 5 2 88 88
19 │ 5 3 88
20 │ 5 4 88 88
21 │ 6 1 Y8888D'
22 │ 6 2 YP YP
23 │ 6 3 YP
24 │ 6 4 YP YP
julia> sort(ds, :g2)
24×3 Sorted Dataset
Sorted by: g2
Row │ g1 g2 y
│ identity identity identity
│ Int64? Int64? String?
─────┼───────────────────────────────
1 │ 1 1 d8888b.
2 │ 2 1 88 `8D
3 │ 3 1 88 88
4 │ 4 1 88 88
5 │ 5 1 88 .8D
6 │ 6 1 Y8888D'
7 │ 1 2 .d8b.
8 │ 2 2 d8' `8b
9 │ 3 2 88ooo88
10 │ 4 2 88~~~88
11 │ 5 2 88 88
12 │ 6 2 YP YP
13 │ 1 3 d888888b
14 │ 2 3 `~~88~~'
15 │ 3 3 88
16 │ 4 3 88
17 │ 5 3 88
18 │ 6 3 YP
19 │ 1 4 .d8b.
20 │ 2 4 d8' `8b
21 │ 3 4 88ooo88
22 │ 4 4 88~~~88
23 │ 5 4 88 88
24 │ 6 4 YP YP
julia> tds = transpose(groupby(ds, :g1), :y)
6×6 Dataset
Row │ g1 _variables_ _c1 _c2 _c3 _c4
│ identity identity identity identity identity identity
│ Int64? String? String? String? String? String?
─────┼───────────────────────────────────────────────────────────────────
1 │ 1 y d8888b. .d8b. d888888b .d8b.
2 │ 2 y 88 `8D d8' `8b `~~88~~' d8' `8b
3 │ 3 y 88 88 88ooo88 88 88ooo88
4 │ 4 y 88 88 88~~~88 88 88~~~88
5 │ 5 y 88 .8D 88 88 88 88 88
6 │ 6 y Y8888D' YP YP YP YP YP
julia> mds = map(tds, x->replace(x, r"[^ ]"=>"∑"), r"_c")
6×6 Dataset
Row │ g1 _variables_ _c1 _c2 _c3 _c4
│ identity identity identity identity identity identity
│ Int64? String? String? String? String? String?
─────┼───────────────────────────────────────────────────────────────────
1 │ 1 y ∑∑∑∑∑∑∑ ∑∑∑∑∑ ∑∑∑∑∑∑∑∑ ∑∑∑∑∑
2 │ 2 y ∑∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑∑∑∑∑∑∑ ∑∑∑ ∑∑∑
3 │ 3 y ∑∑ ∑∑ ∑∑∑∑∑∑∑ ∑∑ ∑∑∑∑∑∑∑
4 │ 4 y ∑∑ ∑∑ ∑∑∑∑∑∑∑ ∑∑ ∑∑∑∑∑∑∑
5 │ 5 y ∑∑ ∑∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑
6 │ 6 y ∑∑∑∑∑∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑
julia> byrow(mds, sum, r"_c", by = x->count(isequal('∑'),x))
6-element Vector{Union{Missing, Int64}}:
25
25
20
20
15
17
julia> using Chain
julia> @chain mds begin
repeat!(2)
sort!(:g1)
flatten!(r"_c")
insertcols!(:g2=>repeat(1:9, 12))
groupby(:g2)
transpose(r"_c")
modify!(r"_c"=>byrow(x->join(reverse(x))))
select!(r"row")
insertcols!(1, :g=>repeat(1:4, 9))
sort!(:g)
end
36×2 Sorted Dataset
Sorted by: g
Row │ g row_function
│ identity identity
│ Int64? String?
─────┼────────────────────────
1 │ 1 ∑∑∑∑∑∑∑∑∑∑∑∑
2 │ 1 ∑∑∑∑∑∑∑∑∑∑∑∑
3 │ 1 ∑∑ ∑∑
4 │ 1 ∑∑ ∑∑
5 │ 1 ∑∑∑∑ ∑∑∑∑
6 │ 1 ∑∑∑∑∑∑∑∑∑∑∑∑
7 │ 1 ∑∑∑∑∑∑∑∑∑∑∑∑
8 │ 1
9 │ 1
10 │ 2 ∑∑∑∑∑∑∑∑∑∑
11 │ 2 ∑∑∑∑∑∑∑∑∑∑∑∑
12 │ 2 ∑∑∑∑∑∑∑∑
13 │ 2 ∑∑∑∑ ∑∑
14 │ 2 ∑∑∑∑∑∑∑∑
15 │ 2 ∑∑∑∑∑∑∑∑∑∑∑∑
16 │ 2 ∑∑∑∑∑∑∑∑∑∑
17 │ 2
18 │ 2
19 │ 3 ∑∑∑∑
20 │ 3 ∑∑∑∑
21 │ 3 ∑∑∑∑
22 │ 3 ∑∑∑∑∑∑∑∑∑∑∑∑
23 │ 3 ∑∑∑∑∑∑∑∑∑∑∑∑
24 │ 3 ∑∑∑∑
25 │ 3 ∑∑∑∑
26 │ 3 ∑∑∑∑
27 │ 3
28 │ 4
29 │ 4 ∑∑∑∑∑∑∑∑∑∑
30 │ 4 ∑∑∑∑∑∑∑∑∑∑∑∑
31 │ 4 ∑∑∑∑∑∑∑∑
32 │ 4 ∑∑∑∑ ∑∑
33 │ 4 ∑∑∑∑∑∑∑∑
34 │ 4 ∑∑∑∑∑∑∑∑∑∑∑∑
35 │ 4 ∑∑∑∑∑∑∑∑∑∑
36 │ 4
Acknowledgement
We like to acknowledge the contributors to Julia
's data ecosystem, especially DataFrames.jl
, since the existence of their works gave the development of InMemoryDatasets.jl
a head start.