• Stars
    star
    120
  • Rank 295,983 (Top 6 %)
  • Language
    C++
  • License
    GNU Lesser Genera...
  • Created over 6 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

spectral radiation analysis software

Tests App Build

InterSpec

InterSpec is a native or web application to assist in analyzing spectral nuclear radiation data, using a peak-based methodology. Common uses include identifying nuclides present, determining source activity, shielding amounts, source age, or other nuclear reactions present. InterSpec also provides a number of other tools useful for analyzing radiation data including spectral file format converting, dose rate calculations, interactive nuclide decay and reference information, gamma cross section calculations, and more. InterSpec can open data files from most common spectral radiation detectors (e.g., most NaI, HPGe, LaBr, CLYC, CsI, etc. based systems) and assist in their analysis. InterSpec can also be built as a stand-alone (e.g., no Internet connection necessary) native app (using either OS provided WebView, or Electron for display) for Windows, Linux, macOS, iOS, or Android.

Getting Started

For executable installation:

A brief getting started guide can be found in brief_ana_overview_InterSpec_Oct2018.pdf; a more comprehensive tutorial is planned for the future.

Release notes, tutorials, and example problems can be found at https://sandialabs.github.io/InterSpec/releases/.

Some Screen Shots

W187 peak fit example

Interactions with the chart are fast and natural. Peak fitting is as easy as double clicking where you want a peak fit, or there is an automated option that is especially useful for HPGe detectors.

Activity Fit Tool

Can fit for activities and shielding for multiple nuclides at once, taking into account interferences, ages, self-attenuation, etc. A large shielding database is included, or generic shielding can be used.

Ho166m and Eu152 peak fit example

Easily fit overlapping peaks. Photopeak sources are assigned to peaks for easy activity/shielding fitting or energy calibration.

Nuclear decay chart

Includes an extensive database of nuclides. Nuclide aging is performed on-the-fly throughout the app to allow adjusting or fitting for ages.

Nuclear decay chain Lots of useful tools.

Nuclide identification by energy

Searching for nuclides by energy, by default, takes into acount peak amplitudes and other peaks in the spectrum (even if you havent fit for them) to order results in an intelligent way.

Dose calculation example

You can go from source activity to dose, or from measured dose to source activity, or shielding amount.

Building from source

If you would like to build the app, some instructions are below.

If you are developer of radiation analysis software, there is, in particular some code that may be useful for you:

  1. sandia_decay: This small library reads in sandia.decay.xml and allows you to retrieve the half-lives, xrays, gammas, alpha, betas, etc given off by any certain nuclide, or you can easily decay nuclides and find activities of the decay chain nuclides, the particles that will be given off at any time, and more. An emphasis is placed on easy to use, but computationally efficient code.
  2. SpecUtils: If you have to read in spectral files, including N42, PCF, SPC, DAT, CHN, etc., this library may do what you want. It decodes many file format variants, and saves to about a dozen different formats. This library can be called from c++, Python, or Java, or if you want a very simple gui to do this, or a command line application, check out cambio (which is powered by this library).

Prerequisites

At a minimum, you will need a C++14 compiler, and cmake.

Then to build, you can choose one of two methods to build the code:

  1. Use cmake to fetch and build the prerequisites for you, by specifying the InterSpec_FETCH_DEPENDENCIES CMake option to ON. This option requires having git installed, but is generally the easier of the two options.
  2. Build the prerequisites yourself. This option is faster if you plan to rebuild the code many times, as CMake will have less libraries to deal with internally,. You will need to build the following libraries from source (see the instructions in the patches directory):
    • Wt version 3.7.1. Some patches are included in the patches directory.
    • boost version 1.78 is
    • The macOS app also requires libharu, and libpng.

Included in this repository are some additional C++ libraries that will be built as part of building InterSpecs code.
These libraries include Cuba, Minuit2, muparserx, QR Code generator library, pugixml and rapidxml, which are in the external_libs directory, while the js directory contains some ECMAScript libraries, including jQuery, qTip2, and D3.

Additionally for the Windows or Electron application build, you will need npm installed to create the application package (see the electron directory for build instructions).

Building

After compiling boost and Wt from source, clone the InterSpec repository, and from the terminal, run cmake:

git clone --recursive https://github.com/sandialabs/interspec/
cd interspec
mkdir build
cd build
cmake ..

If you are on Windows, or prefer a GUI, running the CMake for building InterSpec should be like most other CMake project; you will probably have to fill in paths to boost and Wt manually. Or if you have boost or Wt in a non-standard location, you can use a command like:

cmake -DCMAKE_PREFIX_PATH=/path/to/prefix ..

or if boost and Wt are in different directories:

cmake -generator "Visual Studio 15 2017 Win64" \
      -DBOOST_ROOT=/path/to/boost \
      -DWt_INCLUDE_DIR=/path/to/wt/include \
      -DCMAKE_MSVC_RUNTIME_LIBRARY="MultiThreaded$<$<CONFIG:Debug>:Debug>" \
      -DBoost_USE_STATIC_LIBS=OFF \
      -DBoost_USE_STATIC_RUNTIME=ON \
      ..

And then make:

make -j8
# or
cmake --build . --config Release

If all goes well, InterSpec default to building an executable that when ran from the command line, starts a local web server, you can access then access from your browser. To run InterSpec, use a command like:

./bin/InterSpec.exe --docroot . --http-address 127.0.0.1 --http-port 8080 -c ./data/config/wt_config_localweb.xml

and then point your browser to http://localhost:8080.

If you would like build as a native-ish app, see the BUILD_AS_OSX_APP, or BUILD_AS_ELECTRON_APP CMake options, as well as the electron directory for the latter. For building as a WebApp behind something like nginx or apache, see BUILD_FOR_WEB_DEPLOYMENT, but please note that InterSpec is not developed for general internet deployments, so there is likely many issues you would need to consider or address before exposing to untrusted users. There are also a number of CMake options available to control which features get included in InterSpec.

Building for iOS and Android are both possible (see the target directory), and these instructions will be updated in the future.

Authors

Ethan Chan, William Johnson, David Ka-Ming Lee, Christian Morte, with extensive additional support provided by Noel Nachtigal and Edward Walsh.

License

This project is licensed under the LGPL v2.1 License - see the LICENSE.md file for details

Copyright

Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software.

Disclaimer

DISCLAIMER OF LIABILITY NOTICE:
The United States Government shall not be liable or responsible for any maintenance,
updating or for correction of any errors in the SOFTWARE or subsequent approved version
releases.


THE INTERSPEC (SOFTWARE) AND ANY OF ITS SUBSEQUENT VERSION
RELEASES, SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY OF
ANY KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT
NOT LIMITED TO, ANY WARRANTY THAT THE SOFTWARE WILL CONFORM TO
SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY
WARRANTY THAT THE SOFTWARE WILL BE ERROR FREE, OR ANY WARRANTY
THAT THE DOCUMENTATION, IF PROVIDED, WILL CONFORM TO THE
SOFTWARE. IN NO EVENT SHALL THE UNITED STATES GOVERNMENT OR ITS
CONTRACTORS OR SUBCONTRACTORS BE LIABLE FOR ANY DAMAGES,
INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY
WAY CONNECTED WITH THE SOFTWARE OR ANY OTHER PROVIDED
DOCUMENTATION, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT,
TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUSTAINED BY
PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS
SUSTAINED FROM, OR AROSE OUT OF THE RESULT OF, OR USE OF, THE
SOFTWARE OR ANY PROVIDED DOCUMENTATION. THE UNITED STATES
GOVERNMENT DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING
THIRD PARTY SOFTWARE, IF PRESENT IN THE SOFTWARE, AND DISTRIBUTES
IT "AS IS."

Acknowledgement

This InterSpec Software was developed with funds from the Science and Technology Directorate of the Department of Homeland Security.

Privacy Policy

InterSpec apps built by Sandia National Laboratories, do not collect any personal information.

InterSpec locally stores preferences you may change in the app as well as spectra you load, explicitly saved states, and the app state when it is exited. This information does not leave your device, and can be deleted by removing the application data folder in the operating system's standard location for the app.

The only time external network communications is used by InterSpec is when the Map Tool is used, in which case it is only used to request map tiles from https://arcgisonline.com. Users will be warned before doing this, and there is an option to use your own arcgisonline.com account to request the the map tiles under (see the in-app Map Tools help for more information).

More Repositories

1

wiretap

Wiretap is a transparent, VPN-like proxy server that tunnels traffic via WireGuard and requires no special privileges to run.
Go
847
star
2

toyplot

Interactive plotting for Python.
Jupyter Notebook
422
star
3

Albany

Sandia National Laboratories' Albany multiphysics code
C++
281
star
4

scot

Sandia Cyber Omni Tracker (SCOT)
JavaScript
237
star
5

qthreads

Lightweight locality-aware user-level threading runtime.
C
170
star
6

dr_robot

This tool can be used to enumerate the subdomains associated with a company by aggregating the results of multiple OSINT (Open Source Intelligence) tools.
Python
138
star
7

pyGSTi

A python implementation of Gate Set Tomography
Jupyter Notebook
134
star
8

seacas

The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, postprocessing, translation, and utility applications supporting finite element analysis software using the Exodus database file format.
C
131
star
9

snl-quest

An open source, Python-based software platform for energy storage simulation and analysis developed by Sandia National Laboratories.
Python
128
star
10

omega_h

Simplex mesh adaptivity for HPC
C++
105
star
11

slycat

Web-based data science analysis and visualization platform.
JavaScript
75
star
12

pecos

Python package for performance monitoring of time series data
Python
64
star
13

gr-pdu_utils

GNU Radio PDU Utilities
C++
61
star
14

UQTk

Sandia Uncertainty Quantification Toolkit
Fortran
59
star
15

chama

Python package for sensor placement optimization
Python
57
star
16

bcnn

3D Bayesian Convolutional Neural Network (BCNN) for Credible Geometric Uncertainty. Code for the paper: https://arxiv.org/abs/1910.10793
Python
56
star
17

gr-fhss_utils

Bursty modem utilities
C++
56
star
18

Whetstone

Python
47
star
19

TChem

TChem - A Software Toolkit for the Analysis of Complex Kinetic Models
Jupyter Notebook
44
star
20

tracktable

Tracktable: moving object trajectory analysis in C++ and Python
C++
39
star
21

tbnn

This code implements the Tensor Basis Neural Network (TBNN) as described in Ling et al. (Journal of Fluid Mechanics, 2016).
Python
38
star
22

hyram

Python
38
star
23

reverse_argparse

A Python library to determine what exactly the user ran at the command line, along with default values, and any transformations that happened after parsing arguments.
Python
38
star
24

pyapprox

Python
37
star
25

Spitfire

Spitfire is a Python/C++ library for constructing tabulated chemistry models and solving differential equations.
Python
37
star
26

portals4

Portals is a low-level network API for high-performance networking on high-performance computing systems developed by Sandia National Laboratories, Intel Corporation, and the University of New Mexico. The Portals 4 Reference Implementation is a complete implementation of Portals 4, with transport over InfiniBand VERBS and UDP. Shared memory transport is available as an optimization, including Linux KNEM support. The Portals 4 reference implementation is supported on both modern 64 bit Linux and 64 bit Mac OS X. The reference implementation has been developed by Sandia National Laboratories, Intel Corporation, and System Fabric Works. For more information on the Portals 4 standard, please see the Portals 4 page.
C
34
star
27

cross-sim

CrossSim: accuracy simulation of analog in-memory computing
Python
33
star
28

NuMAD

Numerical Manufacturing And Design Tool (NuMAD) -- A design tool for wind and water turbine composite blades
MATLAB
33
star
29

Prove-It

A tool for proving and organizing general theorems using Python.
Jupyter Notebook
27
star
30

SpecUtils

A library for opening, manipulating, and exporting gamma spectral files
C++
26
star
31

optimism

Computational solid mechanics made easy with Jax
Python
26
star
32

spack-manager

A project and machine deployment model using Spack
Python
25
star
33

gr-timing_utils

GNU Radio Timing Utilties
C++
25
star
34

MATLAB_PV_LIB

MATLAB PV function library
HTML
24
star
35

lgrtk

Tool Kit for Lagrangian Grid Reconnection
C++
22
star
36

mac-sandbox

This is a malware analyzer for Mac OS X that extends the Cuckoo Sandbox project (https://cuckoosandbox.org/)
Python
22
star
37

gait

Zeek Extension to Collect Metadata for Profiling of Endpoints and Proxies
Zeek
21
star
38

n2a

An object-oriented language for modeling large-scale neural systems, along with an IDE for writing and simulating models.
Java
21
star
39

MEWS

Multi-scenario Extreme Weather Simulator (MEWS)
Python
20
star
40

spat

A graphical user interface for measuring and performing inter-active analysis of physical unclonable functions (PUFs)
Python
20
star
41

compadre

Compadre (Compatible Particle Discretization and Remap)
C++
20
star
42

pyttb

Python Tensor Toolbox
Python
19
star
43

poblano_toolbox

Nonlinear optimization for MATLAB.
MATLAB
19
star
44

pycheron

Pycheron - A python library for quality control of seismic data based on IRIS Mustang.
Python
18
star
45

MatMCNP

A utility code for generating material cards for MCNP
Python
18
star
46

Zoltan

Zoltan Dynamic Load Balancing and Graph Algorithm Toolkit -- Distribution site
C
18
star
47

pvOps

A set of documented functions for supporting operations research of photovoltaic energy systems.
Jupyter Notebook
18
star
48

verdict

verdict
C++
17
star
49

Chordly

Chordly is a javascript library that may be used to detect and act upon key sequences entered by a user.
JavaScript
17
star
50

SandiaDecay

Easy to use C++ library to calculate nuclear decays and emissions
C++
17
star
51

CACTUS

CACTUS (Code for Axial and Cross-flow TUrbine Simulation) is a turbine performance simulation code, based on a free wake vortex method, to study wind turbines and marine hydrokinetic (MHK) devices.
Fortran
17
star
52

sceptre-phenix

phenix is an orchestration tool and GUI for Sandia's minimega platform
JavaScript
17
star
53

Gulliver

Gulliver is a C# utility package and library engineered for the manipulation of arbitrary sized byte arrays accounting for appropriate endianness and jagged byte length.
C#
15
star
54

PyRIID

ML-based radioisotope identification and estimation from gamma spectra in Python.
Python
15
star
55

suncal

Suncal - Sandia PSL Uncertainty Calculator
Python
14
star
56

Fugu

Python
14
star
57

cambio

Spectroscopic file conversion tool
C
14
star
58

mesquite

Mesquite: Mesh Quality Improvement Toolkit
HTML
14
star
59

sandialabs.github.io

JavaScript
14
star
60

packet2vec

Word2Vec embeddings over packet capture data n-grams.
C++
14
star
61

parapint

Parallel solution of structured nonlinear optimization problems
Python
13
star
62

WecOptTool

WEC Design Optimization Toolbox
Python
13
star
63

Matrices

Contains the matrix generation software and normed matrices described in "Recreating Raven's: Software for systematically generating large numbers of Raven-like matrix problems with normed properties," published in Behavior Research Methods in 2010
13
star
64

SNL-Delft3D-CEC

Fortran
12
star
65

staged-script

A Python package enabling the development of robust automation scripts that are subdivided into stages.
Python
12
star
66

p3a

Portably Performant Physical Algebra
C++
12
star
67

LCM

Laboratory for Computational Mechanics
C++
12
star
68

gr-sandia_utils

Misc blocks
C++
12
star
69

RUBRIC

C++
12
star
70

parsegen-cpp

A C++17 library for parser generation for LALR(1) languages
C++
12
star
71

snl-pstess

The Power and Energy Storage Systems Toolbox
MATLAB
12
star
72

sibl

Sandia Injury Biomechanics Laboratory (SIBL)
Python
11
star
73

shadow

Shadow semi-supervised consistency regularization PyTorch library
Python
11
star
74

lim1tr

Lithium-Ion Modeling with 1-D Thermal Runaway (LIM1TR)
Python
11
star
75

StrideSearch

Storm detection in climate data
C++
11
star
76

SNL-SWAN

SNL-SWAN
Fortran
11
star
77

sceptre-bennu

Modeling and simulation of ICS devices
C++
11
star
78

barcs

Ballistic Asynchronous Reversible Computing with Superconductors -- Tool for functional element enumeration and classification.
Python
10
star
79

lapart-python

Python
10
star
80

TIGER

Target / Integrative Genetic Element Retriever: precisely maps IGEs (a defined type of genomic island) in bacterial and archaeal genomes; package also includes orthogonal program Islander
Perl
10
star
81

miniIsosurface

A mini-app to explore algorithms for generating contours from 3D volumes.
C++
10
star
82

chemical-recommender-system

Platform for rapid computation of molecular similarity and integration of custom machine learning models
Python
9
star
83

sdynpy

A Structural Dynamics Python Library
Python
9
star
84

quinn

Quantification of Uncertainties in Neural Networks
Python
9
star
85

Arcus

Arcus, developed by Sandia National Laboratories, is a C# library for calculating, parsing, formatting, converting and comparing both IPv4 and IPv6 addresses and subnets. It accounts for 128-bit numbers on 32-bit platforms.
C#
9
star
86

SpokeDartsPublic

SpokeDarts sphere-packing sampling in any dimension. Advancing front sampling from radial lines (spokes) through prior samples.
C++
9
star
87

linkshop

Python
8
star
88

capp

A simple, portable package manager for applications
CMake
8
star
89

pyperc

Python package to model invasion percolation
Python
8
star
90

Fenix

Fenix: A Portable, Flexible Fault Tolerance Programming Framework for MPI Applications
C
8
star
91

svp_1547.1

Test scripts for IEEE 1547.1
Python
8
star
92

pyNuMAD

pynumad is an object-oriented, open-source software program written in Python which simplifies the process of creating a three-dimensional model of a wind turbine blade.
Python
8
star
93

rattlesnake-vibration-controller

Vibration Controller targetting Multiple-Input-Multiple-Output (MIMO) and Combined Environments Control
Python
8
star
94

mcdn-3d-seg

Monte Carlo Dropout Network for 3D Image Segmentation
Python
8
star
95

phoenix

An astrodynamics library.
Scala
7
star
96

xyz

zip metadata extraction tool
Python
7
star
97

CSPlib

Computational singular perturbation analysis library
Jupyter Notebook
7
star
98

BioCompoundML

BioCompoundML is a software tool for rapidly screening chemicals by chemical properties, using machine learning.
Python
7
star
99

miniGraphics

Miniapp to demonstrate parallel rendering in an MPI environment using a sort-last parallel rendering approach.
C++
7
star
100

PRIME

PRIME is a modeling framework designed for the "real-time" characterization and forecasting of partially observed epidemics
Python
7
star