• Stars
    star
    130
  • Rank 277,575 (Top 6 %)
  • Language
    R
  • Created almost 9 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Data visualisation using OpenStreetMap objects

R build status codecov Project Status: Active

CRAN Downloads CRAN_Status_Badge

R package to produce visually impressive customisable images of OpenStreetMap (OSM) data downloaded internally from the overpass api. The above map was produced directly from osmplotr with no further modification. This README briefly demonstrates the following functionality:

1. Quick Introduction

2. Installation

3. A Simple Map

4. Highlighting Selected Areas

5. Highlighting Clusters

6. Highlighting Areas Bounded by Named Highways

7. Data Surfaces

8. Gallery


1. Quick Introduction

But first the easy steps to map making:

  1. Specify the bounding box for the desired region

    bbox <- get_bbox (c(-0.15, 51.5, -0.10, 51.52))
  2. Download the desired dataβ€”in this case, all building perimeters.

    dat_B <- extract_osm_objects (key = "building", bbox = bbox)
  3. Initiate an osm_basemap with desired background (bg) colour

    map <- osm_basemap (bbox = bbox, bg = "gray20")
  4. Overlay objects on plot in the desired colour.

    map <- add_osm_objects (map, dat_B, col = "gray40")
  5. Print the map to graphics device of choice

    print_osm_map (map)

2. Installation

First install the package

install.packages ("osmplotr")

or the development version

devtools::install_github ("ropensci/osmplotr")

And then load it in the usual way

library (osmplotr)

3. A Simple Map

Simple maps can be made by overlaying different kinds of OSM data in different colours:

dat_H <- extract_osm_objects (key = "highway", bbox = bbox)
dat_P <- extract_osm_objects (key = "park", bbox = bbox)
dat_G <- extract_osm_objects (key = "landuse", value = "grass", bbox = bbox)
map <- osm_basemap (bbox = bbox, bg = "gray20")
map <- add_osm_objects (map, dat_B, col = "gray40")
map <- add_osm_objects (map, dat_H, col = "gray80")
map <- add_osm_objects (map, dat_P, col = "darkseagreen")
map <- add_osm_objects (map, dat_G, col = "darkseagreen1")
print_osm_map (map)


4. Highlighting Selected Areas

osmplotr is primarily intended as a data visualisation tool, particularly through enabling selected regions to be highlighted. Regions can be defined according to simple point boundaries:

pts <- sp::SpatialPoints (cbind (c (-0.115, -0.13, -0.13, -0.115),
                             c (51.505, 51.505, 51.515, 51.515)))

OSM objects within the defined regions can then be highlighted with different colour schemes. cols defines colours for each group (with only one here), while bg defines the colour of the remaining, background area.

map <- osm_basemap (bbox = bbox, bg = "gray20")
map <- add_osm_groups (map, dat_B, groups = pts, cols = "orange", bg = "gray40")
map <- add_osm_objects (map, london$dat_P, col = "darkseagreen1")
map <- add_osm_groups (map, london$dat_P, groups = pts, cols = "darkseagreen1",
                   bg = "darkseagreen", boundary = 0)
print_osm_map (map)

Note the border = 0 argument on the last call divides the park polygons precisely along the border. The same map highlighted in dark-on-light:

map <- osm_basemap (bbox = bbox, bg = "gray95")
map <- add_osm_groups (map, dat_B, groups = pts, cols = "gray40", bg = "gray85")
map <- add_osm_groups (map, dat_H, groups = pts, cols = "gray20", bg = "gray70")
print_osm_map (map)


5. Highlighting Clusters

add_osm_groups also enables plotting an entire region as a group of spatially distinct clusters of defined colours. Groups can be defined by simple spatial points denoting their centres:

set.seed (2)
ngroups <- 12
x <- bbox [1, 1] + runif (ngroups) * diff (bbox [1, ])
y <- bbox [2, 1] + runif (ngroups) * diff (bbox [2, ])
groups <- cbind (x, y)
groups <- apply (groups, 1, function (i)
              sp::SpatialPoints (matrix (i, nrow = 1, ncol = 2)))

Calling add_osm_groups with no bg argument forces all points lying outside those defined groups to be allocated to the nearest groups, and thus produces an inclusive grouping extending across an entire region.

map <- osm_basemap (bbox = bbox, bg = "gray20")
map <- add_osm_groups (map, dat_B, groups = groups,
                       cols = rainbow (length (groups)), border_width = 2)
print_osm_map (map)


6. Highlighting Areas Bounded by Named Highways

An alternative way of defining highlighted groups is by naming the highways encircling desired regions.

# These highways extend beyond the previous, smaller bbox
bbox_big <- get_bbox (c(-0.15, 51.5, -0.10, 51.52))
highways <- c ("Davies.St", "Berkeley.Sq", "Berkeley.St", "Piccadilly",
               "Regent.St", "Oxford.St")
highways1 <- connect_highways (highways = highways, bbox = bbox_big)
highways <- c ("Regent.St", "Oxford.St", "Shaftesbury")
highways2 <- connect_highways (highways = highways, bbox = bbox_big)
highways <- c ("Piccadilly", "Shaftesbury.Ave", "Charing.Cross.R",
               "Saint.Martin", "Trafalgar.Sq", "Cockspur.St",
               "Pall.Mall", "St.James")
highways3 <- connect_highways (highways = highways, bbox = bbox_big)
highways <- c ("Charing.Cross", "Duncannon.St", "Strand", "Aldwych",
               "Kingsway", "High.Holborn", "Shaftesbury.Ave")
highways4 <- connect_highways (highways = highways, bbox = bbox_big)
highways <- c ("Kingsway", "Holborn", "Farringdon.St", "Strand",
               "Fleet.St", "Aldwych")
highways5 <- connect_highways (highways = highways, bbox = bbox_big)
groups <- list (highways1, highways2, highways3, highways4, highways5)

And then passing these lists of groups returned by connect_highways to add_osm_groups, this time with some Wes Anderson flair.

map <- osm_basemap (bbox = bbox, bg = "gray20")
library (wesanderson)
cols <- wes_palette ("Darjeeling", 5)
map <- add_osm_groups (map, dat_B, groups = groups, boundary = 1,
                       cols = cols, bg = "gray40", colmat = FALSE)
map <- add_osm_groups (map, dat_H, groups = groups, boundary = 0,
                       cols = cols, bg = "gray70", colmat = FALSE)
print_osm_map (map)


7. Data Surfaces

Finally, osmplotr contains a function add_osm_surface that spatially interpolates a given set of spatial data points and colours OSM objects according to a specified colour gradient. This is illustrated here with the volcano data projected onto the bbox.

x <- seq (bbox [1, 1], bbox [1, 2], length.out = dim (volcano)[1])
y <- seq (bbox [2, 1], bbox [2, 2], length.out = dim (volcano)[2])
xy <- cbind (rep (x, dim (volcano) [2]), rep (y, each = dim (volcano) [1]))
z <- as.numeric (volcano)
dat <- data.frame (x = xy [, 1], y = xy [, 2], z = z)
map <- osm_basemap (bbox = bbox, bg = "gray20")
cols <- gray (0:50 / 50)
map <- add_osm_surface (map, dat_B, dat = dat, cols = cols)
# Darken cols by ~20%
map <- add_osm_surface (map, dat_H, dat = dat,
                        cols = adjust_colours (cols, -0.2))
map <- add_colourbar (map, cols = cols, zlims = range (volcano))
map <- add_axes (map)
print_osm_map (map)


8. Gallery

Got a nice osmplotr map? Please contribute in one of the following ways:

  1. Fork repo, add link to README.md/.Rmd, and send pull request; or

  2. Open issue with details; or

  3. Send email to address in DESCRIPTION.


See package vignettes (basic maps and data maps) for a lot more detail and further capabilities of osmplotr. Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.


ropensci_footer

More Repositories

1

drake

An R-focused pipeline toolkit for reproducibility and high-performance computing
R
1,339
star
2

skimr

A frictionless, pipeable approach to dealing with summary statistics
HTML
1,108
star
3

targets

Function-oriented Make-like declarative workflows for R
R
912
star
4

rtweet

🐦 R client for interacting with Twitter's [stream and REST] APIs
R
785
star
5

tabulizer

Bindings for Tabula PDF Table Extractor Library
R
518
star
6

pdftools

Text Extraction, Rendering and Converting of PDF Documents
C++
489
star
7

magick

Magic, madness, heaven, sin
R
440
star
8

visdat

Preliminary Exploratory Visualisation of Data
R
439
star
9

stplanr

Sustainable transport planning with R
R
417
star
10

RSelenium

An R client for Selenium Remote WebDriver
R
332
star
11

rnoaa

R interface to many NOAA data APIs
R
328
star
12

osmdata

R package for downloading OpenStreetMap data
R
315
star
13

charlatan

Create fake data in R
R
291
star
14

software-review

rOpenSci Software Peer Review.
R
279
star
15

iheatmapr

Complex, interactive heatmaps in R
R
259
star
16

taxize

A taxonomic toolbelt for R
R
250
star
17

rrrpkg

Use of an R package to facilitate reproducible research
248
star
18

elastic

R client for the Elasticsearch HTTP API
R
244
star
19

tesseract

Bindings to Tesseract OCR engine for R
R
236
star
20

git2r

R bindings to the libgit2 library
R
216
star
21

qualtRics

Download ⬇️ Qualtrics survey data directly into R!
R
215
star
22

biomartr

Genomic Data Retrieval with R
R
212
star
23

writexl

Portable, light-weight data frame to xlsx exporter for R
C
202
star
24

googleLanguageR

R client for the Google Translation API, Google Cloud Natural Language API and Google Cloud Speech API
HTML
194
star
25

rnaturalearth

An R package to hold and facilitate interaction with natural earth map data 🌍
R
191
star
26

textreuse

Detect text reuse and document similarity
R
188
star
27

piggyback

πŸ“¦ for using large(r) data files on GitHub
R
182
star
28

tokenizers

Fast, Consistent Tokenization of Natural Language Text
R
179
star
29

rentrez

talk with NCBI entrez using R
R
178
star
30

rcrossref

R client for various CrossRef APIs
R
166
star
31

osmextract

Download and import OpenStreetMap data from Geofabrik and other providers
R
166
star
32

dataspice

🌢️ Create lightweight schema.org descriptions of your datasets
R
159
star
33

rgbif

Interface to the Global Biodiversity Information Facility API
R
155
star
34

tic

Tasks Integrating Continuously: CI-Agnostic Workflow Definitions
R
153
star
35

webchem

Chemical Information from the Web
R
149
star
36

geojsonio

Convert many data formats to & from GeoJSON & TopoJSON
R
148
star
37

tsbox

tsbox: Class-Agnostic Time Series in R
R
148
star
38

MODIStsp

An "R" package for automatic download and preprocessing of MODIS Land Products Time Series
R
147
star
39

ghql

GraphQL R client
R
145
star
40

DataPackageR

An R package to enable reproducible data processing, packaging and sharing.
R
145
star
41

dev_guide

rOpenSci Packages: Development, Maintenance, and Peer Review
R
141
star
42

osfr

R interface to the Open Science Framework (OSF)
R
140
star
43

jqr

R interface to jq
R
139
star
44

tarchetypes

Archetypes for targets and pipelines
R
130
star
45

opencv

R bindings for OpenCV
C++
130
star
46

ssh

Native SSH client in R based on libssh
C
126
star
47

RefManageR

R package RefManageR
R
114
star
48

ezknitr

Avoid the typical working directory pain when using 'knitr'
R
112
star
49

spocc

Species occurrence data toolkit for R
R
109
star
50

hunspell

High-Performance Stemmer, Tokenizer, and Spell Checker for R
C++
106
star
51

weathercan

R package for downloading weather data from Environment and Climate Change Canada
R
102
star
52

crul

R6 based http client for R (for developers)
R
102
star
53

UCSCXenaTools

πŸ“¦ An R package for accessing genomics data from UCSC Xena platform, from cancer multi-omics to single-cell RNA-seq https://cran.r-project.org/web/packages/UCSCXenaTools/
R
102
star
54

gistr

Interact with GitHub gists from R
R
101
star
55

spelling

Tools for Spell Checking in R
R
101
star
56

rfishbase

R interface to the fishbase.org database
R
100
star
57

gutenbergr

Search and download public domain texts from Project Gutenberg
R
99
star
58

git2rdata

An R package for storing and retrieving data.frames in git repositories.
R
99
star
59

openalexR

Getting bibliographic records from OpenAlex
R
98
star
60

bib2df

Parse a BibTeX file to a tibble
R
97
star
61

ckanr

R client for the CKAN API
R
97
star
62

nasapower

API Client for NASA POWER Global Meteorology, Surface Solar Energy and Climatology in R
R
96
star
63

rsvg

SVG renderer for R based on librsvg2
C
95
star
64

EML

Ecological Metadata Language interface for R: synthesis and integration of heterogenous data
R
94
star
65

FedData

Functions to Automate Downloading Geospatial Data Available from Several Federated Data Sources
R
94
star
66

cyphr

:shipit: Humane encryption
R
93
star
67

GSODR

API Client for Global Surface Summary of the Day (GSOD) Weather Data Client in R
R
90
star
68

mapscanner

R package to print maps, draw on them, and scan them back in
R
88
star
69

av

Working with Video in R
C
88
star
70

opencage

🌐 R package for the OpenCage API -- both forward and reverse geocoding 🌐
R
87
star
71

gittargets

Data version control for reproducible analysis pipelines in R with {targets}.
R
85
star
72

tidync

NetCDF exploration and data extraction
R
85
star
73

historydata

Datasets for Historians
R
83
star
74

rzmq

R package for ZMQ
C++
82
star
75

CoordinateCleaner

Automated flagging of common spatial and temporal errors in biological and palaeontological collection data, for the use in conservation, ecology and palaeontology.
HTML
79
star
76

rebird

Wrapper to the eBird API
R
79
star
77

smapr

An R package for acquisition and processing of NASA SMAP data
R
79
star
78

bikedata

🚲 Extract data from public hire bicycle systems
R
79
star
79

dittodb

dittodb: A Test Environment for DB Queries in R
R
78
star
80

arkdb

Archive and unarchive databases as flat text files
R
78
star
81

fingertipsR

R package to interact with Public Health England’s Fingertips data tool
R
78
star
82

vcr

Record HTTP calls and replay them
R
77
star
83

nodbi

Document DBI connector for R
R
76
star
84

opentripplanner

An R package to set up and use OpenTripPlanner (OTP) as a local or remote multimodal trip planner.
R
73
star
85

nlrx

nlrx NetLogo R
R
71
star
86

slopes

Package to calculate slopes of roads, rivers and trajectories
R
70
star
87

tidyhydat

An R package to import Water Survey of Canada hydrometric data and make it tidy
R
70
star
88

rb3

A bunch of downloaders and parsers for data delivered from B3
R
69
star
89

robotstxt

robots.txt file parsing and checking for R
R
68
star
90

codemetar

an R package for generating and working with codemeta
R
66
star
91

tradestatistics

R package to access Open Trade Statistics API
R
65
star
92

unconf17

Website for 2017 rOpenSci Unconf
JavaScript
64
star
93

roadoi

Use Unpaywall with R
R
64
star
94

terrainr

Get DEMs and orthoimagery from the USGS National Map, georeference your images and merge rasters, and visualize with Unity 3D
R
64
star
95

tiler

Generate geographic and non-geographic map tiles from R
R
64
star
96

comtradr

Functions for Interacting with the UN Comtrade API
R
64
star
97

NLMR

πŸ“¦ R package to simulate neutral landscape models πŸ”
R
63
star
98

parzer

Parse geographic coordinates
R
63
star
99

rWBclimate

R interface for the World Bank climate data
R
62
star
100

stats19

R package for working with open road traffic casualty data from Great Britain
R
61
star