A simple to use C# library for reading and manipulating DICOM files. New documentation added to github via Github pages.
- Online API via DocFX
- Dot Net Standard Compliant (multiplatform)
- MIT Open Source license
- Examples On GH Pages
- NuGet packages released with each build
- 10,000+ downloads
Wickedly Simple
var dcm = DICOMObject.Read("MyDICOMFile.dcm");
//***COOL CODE GOES HERE***
//Writing is equally easy
dcm.Write("MyHackedDICOMFile.dcm");
Read more at the project website at http://rexcardan.github.io/Evil-DICOM/
Content | Link |
---|---|
Introductory Video | Youtube |
Examples | Example Operations |
Online API | API Documentation |
Evil-DICOM used and featured in publications
-
Mayo, C., et al., Demonstration of a software design and statistical analysis methodology with application to patient outcomes data sets. Medical physics, 2013. 40(11): p. 111718.
-
Vickress, J., R. Barnett, and S. Yartsev, Data Inventory for Cancer Patients Receiving Radiotherapy for Outcome Analysis and Modeling. Biomedical Data Mining, 2014. 3(105): p. 2.
-
Saalfeld, P., et al., Touchless measurement of medical image data for interventional support. Mensch und Computer 2017-Tagungsband, 2017.
-
Miras, H., et al., Monte Carlo verification of radiotherapy treatments with CloudMC. Radiation Oncology, 2018. 13(1): p. 99.
-
Patrick Saalfeld, D.K. and C.H. Bernhard Preim, Image Data for Interventional Support. Mensch und Computer 2017-Tagungsband: Spielend einfach interagieren, 2018. 17: p. 83.
-
Pyyry, E.J. and W. Keranen, Varian APIs: A handbook for programming in the Varian oncology software ecosystem. 2018.
-
Saalfeld, P., J. Patzschke, and B. Preim, An immersive system for exploring and measuring medical image data. Mensch und Computer 2017-Tagungsband: Spielend einfach interagieren, 2018. 17: p. 73.
-
Alkhimova, S. and V. Kuleshov, Analysis of turning angle in scope of brain tissue segmentation with CUSUM filter. 2019.
-
Alkhimova, S. and S. Sliusar, Analysis of effectiveness of thresholding in perfusion ROI detection on T2-weighted MR images with abnormal brain anatomy. arXiv preprint arXiv:1912.05469, 2019.
Supported by JetBrains' ReSharper