• Stars
    star
    3
  • Rank 3,963,521 (Top 79 %)
  • Language
    Go
  • Created almost 3 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

GitHub utilities for the RAPIDS Ops team

More Repositories

1

cudf

cuDF - GPU DataFrame Library
C++
8,319
star
2

cuml

cuML - RAPIDS Machine Learning Library
C++
3,864
star
3

cugraph

cuGraph - RAPIDS Graph Analytics Library
Cuda
1,668
star
4

cusignal

cuSignal - RAPIDS Signal Processing Library
Python
703
star
5

raft

RAFT contains fundamental widely-used algorithms and primitives for machine learning and information retrieval. The algorithms are CUDA-accelerated and form building blocks for more easily writing high performance applications.
Cuda
586
star
6

jupyterlab-nvdashboard

A JupyterLab extension for displaying dashboards of GPU usage.
TypeScript
582
star
7

notebooks

RAPIDS Sample Notebooks
Shell
577
star
8

cuspatial

CUDA-accelerated GIS and spatiotemporal algorithms
Jupyter Notebook
543
star
9

rmm

RAPIDS Memory Manager
C++
420
star
10

deeplearning

Jupyter Notebook
336
star
11

cucim

cuCIM - RAPIDS GPU-accelerated image processing library
Jupyter Notebook
333
star
12

dask-cuda

Utilities for Dask and CUDA interactions
Python
266
star
13

cuxfilter

GPU accelerated cross filtering with cuDF.
Python
261
star
14

node

GPU-accelerated data science and visualization in node
TypeScript
170
star
15

clx

A collection of RAPIDS examples for security analysts, data scientists, and engineers to quickly get started applying RAPIDS and GPU acceleration to real-world cybersecurity use cases.
Jupyter Notebook
167
star
16

libgdf

[ARCHIVED] C GPU DataFrame Library
Cuda
138
star
17

dask-cudf

[ARCHIVED] Dask support for distributed GDF object --> Moved to cudf
Python
135
star
18

cloud-ml-examples

A collection of Machine Learning examples to get started with deploying RAPIDS in the Cloud
Jupyter Notebook
134
star
19

ucx-py

Python bindings for UCX
Python
118
star
20

gpu-bdb

RAPIDS GPU-BDB
Python
103
star
21

kvikio

KvikIO - High Performance File IO
Python
100
star
22

plotly-dash-rapids-census-demo

Jupyter Notebook
92
star
23

gputreeshap

C++
83
star
24

frigate

Frigate is a tool for automatically generating documentation for your Helm charts
Python
76
star
25

wholegraph

WholeGraph - large scale Graph Neural Networks
Cuda
75
star
26

spark-examples

[ARCHIVED] Moved to github.com/NVIDIA/spark-xgboost-examples
Jupyter Notebook
70
star
27

docker

Dockerfile templates for creating RAPIDS Docker Images
Shell
69
star
28

cuvs

cuVS - a library for vector search and clustering on the GPU
Jupyter Notebook
57
star
29

custrings

[ARCHIVED] GPU String Manipulation --> Moved to cudf
Cuda
46
star
30

docs

RAPIDS Documentation Site
HTML
34
star
31

cudf-alpha

[ARCHIVED] cuDF [alpha] - RAPIDS Merge of GoAi into cuDF
34
star
32

rapids-examples

Jupyter Notebook
31
star
33

nvgraph

C++
26
star
34

rapids-cmake

CMake
24
star
35

cuhornet

Cuda
24
star
36

cuDataShader

Jupyter Notebook
22
star
37

gpuci-build-environment

Common build environment used by gpuCI for building RAPIDS
Dockerfile
19
star
38

distributed-join

C++
19
star
39

devcontainers

Shell
18
star
40

dask-cuml

[ARCHIVED] Dask support for multi-GPU machine learning algorithms --> Moved to cuml
Python
16
star
41

integration

RAPIDS - combined conda package & integration tests for all of RAPIDS libraries
Shell
15
star
42

xgboost-conda

Conda recipes for xgboost
Jupyter Notebook
12
star
43

benchmark

Python
11
star
44

ucxx

C++
11
star
45

dependency-file-generator

Python
10
star
46

asvdb

Python
9
star
47

helm-chart

Shell
9
star
48

deployment

RAPIDS Deployment Documentation
Jupyter Notebook
9
star
49

miniforge-cuda

Dockerfile
9
star
50

ci-imgs

Dockerfile
7
star
51

dask-cugraph

Python
7
star
52

rapids.ai

rapids.ai web site
HTML
7
star
53

ptxcompiler

Python
6
star
54

GaaS

Python
5
star
55

rvc

Go
4
star
56

scikit-learn-nv

Python
4
star
57

ops-bot

A Probot application used by the Ops team for automation.
TypeScript
4
star
58

workflows

Shell
4
star
59

rapids-triton

C++
4
star
60

dask-build-environment

Build environments for various dask related projects on gpuCI
Dockerfile
3
star
61

multi-gpu-tools

Shell
3
star
62

detect-weak-linking

Python
3
star
63

dask-cuda-benchmarks

Python
2
star
64

shared-workflows

Reusable GitHub Actions workflows for RAPIDS CI
Shell
2
star
65

rapids_triton_pca_example

C++
2
star
66

cugunrock

Cuda
2
star
67

dgl-cugraph-build-environment

Dockerfile
2
star
68

projects

Jupyter Notebook
2
star
69

crossfit

Metric calculation library
Python
2
star
70

gpuci-mgmt

Mangement scripts for gpuCI
Shell
1
star
71

ansible-roles

1
star
72

code-share

C++
1
star
73

build-metrics-reporter

Python
1
star
74

cibuildwheel-imgs

Dockerfile
1
star
75

gpuci-tools

User tools for use within the gpuCI environment
Shell
1
star
76

pynvjitlink

Python
1
star
77

rapids-dask-dependency

Shell
1
star
78

sphinx-theme

This repository contains a Sphinx theme used for RAPIDS documentation
CSS
1
star