Prodict
Prodict = Dictionary with IDE friendly(auto code completion) and dot-accessible attributes and more.
What it does
Ever wanted to use a dict
like a class and access keys as attributes? Prodict does exactly this.
Although there are number of modules doing this, Prodict does a little bit more.
You can provide type hints and get auto code completion!
With type hints, you also get nested object instantiations, which will blow your mind.
You will never want to use dict
again.
Why?
-
Because accessing
dict
keys liked['key']
is error prone and ugly. -
Because it becomes uglier if it is nested, like
d['key1]['key2']['key3']
. Compared['key1]['key2']['key3']
tod.key1.key2.key3
, which one looks better? -
Because since web technologies mostly talk with JSON, it should be much more easy to use JSON data(see sample use case below).
-
Because auto code completion makes developers' life easier.
-
Because serializing a Python class to
dict
and deserializing fromdict
in one line is awesome!
Features
- A class with dynamic properties, without defining it beforehand.
j = Prodict()
j.hi = 'there'
- Pass named arguments and all arguments will become properties.
p = Prodict(lang='Python', pros='Rocks!')
print(p.lang) # Python
print(p.pros) # Rocks!
print(p) # {'lang': 'Python', 'pros': 'Rocks!'}
- Instantiate from a
dict
, getdict
keys as properties
p = Prodict.from_dict({'lang': 'Python', 'pros': 'Rocks!'})
print(p.lang) # Python
p.another_property = 'this is dynamically added'
- Pass a
dict
as argument, get a nestedProdict
!
p = Prodict(package='Prodict', makes='Python', rock={'even': 'more!'})
print(p) # {'package': 'Prodict', 'makes': 'Python', 'rock': {'even': 'more!'}}
print(p.rock.even) # 'more!'
print(type(p.rock)) # <class 'prodict.Prodict'>
- Extend
Prodict
and use type annotations for auto type conversion and auto code completion
class User(Prodict):
user_id: int
name: str
user = User(user_id="1", name="Ramazan")
type(user.user_id) # <class 'int'>
# IDE will be able to auto complete 'user_id' and 'name' properties(see example 1 below)
Why type conversion? Because it will be useful if the incoming data doesn't have the desired type.
class User(Prodict):
user_id: int
name: str
literal: Any
response = requests.get("https://some.restservice.com/user/1").json()
user: User = User.from_dict(response)
type(user.user_id) # <class 'int'>
Notes on automatic type conversion:
- In the above example code,
user.user_id
will be anint
, even if rest service responded withstr
. - Same goes for all built-in types(int, str, float, bool, list, tuple), except
dict
. Because by default, alldict
types will be converted toProdict
. - If you don't want any type conversion but still want to have auto code completion, use
Any
as type annotation, like theliteral
attribute defined inUser
class. - If the annotated type of an attribute is sub-class of a
Prodict
, the provideddict
will be instantiated as the instance of sub-class. Even if it isList
of the sub-class(see sample usa case below).
Sample use case
Suppose that you are getting this JSON response from https://some.restservice.com/user/1
:
{
user_id: 1,
user_name: "rambo",
posts: [
{
title:"Hello World",
text:"This is my first blog post...",
date:"2018-01-02 03:04:05",
comments: [
{
user_id:2,
comment:"Good to see you blogging",
date:"2018-01-02 03:04:06"
},
{
user_id:3,
comment:"Good for you",
date:"2018-01-02 03:04:07"
}
]
},
{
title:"Leave the old behind",
text:"Stop using Python 2.x...",
date:"2018-02-03 04:05:06",
comments: [
{
user_id:4,
comment:"Python 2 is dead, long live Python",
date:"2018-02-03 04:05:07"
},
{
user_id:5,
comment:"You are god damn right :wears Heissenberg glasses:",
date:"2018-02-03 04:05:08"
}
]
}
]
}
Despite the fact that JSON being schemaless, most REST services will respond with a certain structure. In the above example, the structure is something like this:
User
|--> user_id
|--> user_name
|--> posts [post]
|--> title
|--> text
|--> date
|--> comments [comment]
|--> user_id
|--> comment
|--> date
And you want to convert this to appropriate Python classes.
Without Prodict
:
class Comment:
def __init__(self, user_id, comment, date):
self.user_id = user_id
self.comment = comment
self.date = date
class Post:
def __init__(self, title, text, date):
self.title = title
self.text = text
self.date = date
self.comments = []
class User:
def __init__(self, user_id, user_name):
self.user_id = user_id
self.user_name = user_name
self.posts = []
user_json = requests.get("https://some.restservice.com/user/1").json()
posts = [Post(post['title'], post['text'], post['date']) for post in user_json['posts']]
for post in posts:
post.comments = [[comment for comment in post['comments']] for post in user_json['posts']]
user = User(user_json['user_id'], user_json['user_name'])
user.posts = posts
for post in user.posts:
print(post.title)
With Prodict you just need to define the classes and let the prodict do the rest like this:
class Comment(Prodict):
user_id: int
comment: str
date: str
class Post(Prodict):
title: str
text: str
date: str
comments: List[Comment]
class User(Prodict):
user_id: int
user_name: str
posts: List[Post]
user_json = requests.get("https://some.restservice.com/user/1").json()
user:User = User.from_dict(user_json)
# Don't forget to annotate the `user` with `User` type in order to get auto code completion.
See the difference?
Plus you can add new attributes to User
, Post
and Comment
objects dynamically and access them as dot-accessible attributes.
Examples
Example 0: Use it like regular dict
, because it is a dict.
from prodict import Prodict
d = dict(lang='Python', pros='Rocks!')
p = Prodict(lang='Python', pros='Rocks!')
print(d) # {'lang': 'Python', 'pros': 'Rocks!'}
print(p) # {'lang': 'Python', 'pros': 'Rocks!'}
print(d == p) # True
p2 = Prodict.from_dict({'Hello': 'world'})
print(p2) # {'Hello': 'world'}
print(issubclass(Prodict, dict)) # True
print(isinstance(p, dict)) # True
print(set(dir(dict)).issubset(dir(Prodict))) # True
Example 1: Accessing keys as attributes and auto completion.
from prodict import Prodict
class Country(Prodict):
name: str
population: int
turkey = Country()
turkey.name = 'Turkey'
turkey.population = 79814871
Example 2: Auto type conversion
germany = Country(name='Germany', population='82175700', flag_colors=['black', 'red', 'yellow'])
print(germany.population) # 82175700
print(type(germany.population)) # <class 'int'> <-- The type is `int` !
# If you don't want type conversion and still want to have auto code completion, use `Any` as type.
print(germany.flag_colors) # ['black', 'red', 'yellow']
print(type(germany.population)) # <class 'int'>
Example 3: Nested class instantiation
class Ram(Prodict):
capacity: int
unit: str
type: str
clock: int
class Computer(Prodict):
name: str
cpu_cores: int
rams: List[Ram]
def total_ram(self):
return sum([ram.capacity for ram in self.rams])
comp1 = Computer.from_dict(
{
'name': 'My Computer',
'cpu_cores': 4,
'rams': [
{'capacity': 4,
'unit': 'GB',
'type': 'DDR3',
'clock': 2400}
]
})
print(comp1.rams) # [{'capacity': 4, 'unit': 'GB', 'type': 'DDR3', 'clock': 2400}]
comp1.rams.append(Ram(capacity=8, type='DDR3'))
comp1.rams.append(Ram.from_dict({'capacity': 12, 'type': 'DDR3', 'clock': 2400}))
print(comp1.rams)
# [
# {'capacity': 4, 'unit': 'GB', 'type': 'DDR3', 'clock': 2400},
# {'capacity': 8, 'type': 'DDR3'},
# {'capacity': 12, 'type': 'DDR3', 'clock': 2400}
# ]
print(type(comp1.rams)) # <class 'list'>
print(type(comp1.rams[0])) # <class 'Ram'> <-- Mind the type !
Example 4: Provide default values
You can use init
method to provide default values. Keep in mind that init
is NOT __init__
but init
method will be called in __init__
method.
Additionally, you can use init
method instead of __init__
without referring to super
.
class MyDataWithDefaults(Prodict):
an_int: int
a_str: str
def init(self):
self.an_int = 42
self.a_str = 'string'
data = MyDataWithDefaults(dynamic=43)
print(data)
# {'an_int':42, 'a_str':'string', 'dynamic':43}
Class attributes vs Instance attributes
Prodict only works for instance attributes. Even if you try to set an inherited class attribute, a new instance attribute is created and set.
Consider this example:
from prodict import Prodict
class MyClass(Prodict):
class_attr: int = 42 # class_attr is a class attribute, not instance attribute
my_class = MyClass()
print(f"my_class.class_attr: {my_class.class_attr}") # 42
# There is no 'class_attr' defined as instance attribute, so class attribute will be returned (42).
print(f"MyClass.class_attr: {MyClass.class_attr}") # 42
# This is a class attribute, it will be returned as is.
# Now an instance attribute 'class_attr' is created and set to 77
my_class.class_attr = 77
print(f"my_class.class_attr: {my_class.class_attr}") # 42
# For this matter, avoid setting class_attribute with dot notation, use class name instead
MyClass.class_attr = 88
print(f"MyClass.class_attr: {my_class.class_attr}") # 88
# So where did 77 go? It is in instance attribute of the class and since it's name is colliding with
# the class attribute, you can't get it by dot notation. You can use .get tho.
print(f"my_class.get('class_attr'): {my_class.get('class_attr')}") # 77
Installation
If your default Python is 3.7:
pip install prodict
If you have more than one Python versions installed:
python3.7 -m pip install prodict
Limitations
- You cannot use
dict
method names as attribute names because of ambiguity. - You cannot use
Prodict
method names as attribute names(I will changeProdict
method names with dunder names to reduce the limitation). - You must use valid variable names as
Prodict
attribute names(obviously). For example, while '1' cannot be an attribute forProdict
, it is perfectly valid for adict
to have '1' as a key. You can still use prodict.set_attribute('1',123) tho. - Requires Python 3.7+
Thanks
I would like to thank to JetBrains for creating PyCharm, the IDE that made my life better.