AHDRNet
Attention-guided Network for Ghost-free High Dynamic Range Imaging (AHDR)
Qingsen Yan*, Dong Gong*, Qinfeng Shi, Anton van den Hengel, Chunhua Shen, Ian Reid, Yanning Zhang. In IEEE Conference on Compute rVision and Pattern Recognition (CVPR), 2019:1751-1760. (* Equall contribution) [Paper][Project]
Requirements
- Python 2.7
- PyTorch 0.3.1 (tested with 0.3.1)
- MATLAB (for data preparation)
Usage
Data preparation
- Download data from [dataset]
- Move the dataset into
./GenerH5Data/TrainingData
. - Run
./GenerH5Data/PrepareData.m
Testing
- Install this repository and the required packages. A pretrained model is in
./trained-model
. - Prepare dataset.
- Download dataset.
- Move the dataset into
./dataset
. - Processed dataset can be obtained by running the corresponding script in
./GenerH5Data/PrepareData.m
.
- Run
python script_testing.py
files.
Training
- Prepare dataset.
- Download dataset.
- Move the dataset into
./dataset
. - Processed dataset can be obtained by running the corresponding script in
./GenerH5Data/PrepareData.m
.
- Run
python script_training.py
files.
Examples of the Results
Examples of the Estimated Attention Maps
Citation
If you use this code for your research, please cite our paper.
@article{yan2021dual,
title={Dual-attention-guided network for ghost-free high dynamic range imaging},
author={Yan, Qingsen and Gong, Dong and Shi, Javen Qinfeng and van den Hengel, Anton and Shen, Chunhua and Reid, Ian and Zhang, Yanning},
journal={International Journal of Computer Vision},
pages={1--19},
year={2021},
publisher={Springer}
}
@article{yan2019attention,
title={Attention-guided Network for Ghost-free High Dynamic Range Imaging},
author={Yan, Qingsen and Gong, Dong and Shi, Qinfeng and Hengel, Anton van den and Shen, Chunhua and Reid, Ian and Zhang, Yanning},
journal={IEEE Conference on Compute rVision and Pattern Recognition (CVPR)},
year={2019}
pages={1751-1760}
}