• Stars
    star
    3,189
  • Rank 14,079 (Top 0.3 %)
  • Language
    Python
  • License
    BSD 3-Clause "New...
  • Created over 4 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

RAFT

This repository contains the source code for our paper:

RAFT: Recurrent All Pairs Field Transforms for Optical Flow
ECCV 2020
Zachary Teed and Jia Deng

Requirements

The code has been tested with PyTorch 1.6 and Cuda 10.1.

conda create --name raft
conda activate raft
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy opencv -c pytorch

Demos

Pretrained models can be downloaded by running

./download_models.sh

or downloaded from google drive

You can demo a trained model on a sequence of frames

python demo.py --model=models/raft-things.pth --path=demo-frames

Required Data

To evaluate/train RAFT, you will need to download the required datasets.

By default datasets.py will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets folder

β”œβ”€β”€ datasets
    β”œβ”€β”€ Sintel
        β”œβ”€β”€ test
        β”œβ”€β”€ training
    β”œβ”€β”€ KITTI
        β”œβ”€β”€ testing
        β”œβ”€β”€ training
        β”œβ”€β”€ devkit
    β”œβ”€β”€ FlyingChairs_release
        β”œβ”€β”€ data
    β”œβ”€β”€ FlyingThings3D
        β”œβ”€β”€ frames_cleanpass
        β”œβ”€β”€ frames_finalpass
        β”œβ”€β”€ optical_flow

Evaluation

You can evaluate a trained model using evaluate.py

python evaluate.py --model=models/raft-things.pth --dataset=sintel --mixed_precision

Training

We used the following training schedule in our paper (2 GPUs). Training logs will be written to the runs which can be visualized using tensorboard

./train_standard.sh

If you have a RTX GPU, training can be accelerated using mixed precision. You can expect similiar results in this setting (1 GPU)

./train_mixed.sh

(Optional) Efficent Implementation

You can optionally use our alternate (efficent) implementation by compiling the provided cuda extension

cd alt_cuda_corr && python setup.py install && cd ..

and running demo.py and evaluate.py with the --alternate_corr flag Note, this implementation is somewhat slower than all-pairs, but uses significantly less GPU memory during the forward pass.

More Repositories

1

infinigen

Infinite Photorealistic Worlds using Procedural Generation
Python
5,286
star
2

CornerNet

Python
2,355
star
3

CornerNet-Lite

Python
1,780
star
4

DROID-SLAM

Python
1,730
star
5

lietorch

Cuda
670
star
6

RAFT-Stereo

Python
667
star
7

DeepV2D

Python
651
star
8

DPVO

Deep Patch Visual Odometry/SLAM
C++
597
star
9

pose-hg-train

Training and experimentation code used for "Stacked Hourglass Networks for Human Pose Estimation"
Jupyter Notebook
575
star
10

pytorch_stacked_hourglass

Pytorch implementation of the ECCV 2016 paper "Stacked Hourglass Networks for Human Pose Estimation"
Python
469
star
11

CoqGym

A Learning Environment for Theorem Proving with the Coq proof assistant
Coq
380
star
12

pose-ae-train

Training code for "Associative Embedding: End-to-End Learning for Joint Detection and Grouping"
Python
373
star
13

pose-hg-demo

Code to test and use the model from "Stacked Hourglass Networks for Human Pose Estimation"
Lua
316
star
14

SEA-RAFT

[ECCV2024 - Oral, Best Paper Award Candidate] SEA-RAFT: Simple, Efficient, Accurate RAFT for Optical Flow
Python
298
star
15

RAFT-3D

Python
229
star
16

SimpleView

Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"
Python
154
star
17

px2graph

Training code for "Pixels to Graphs by Associative Embedding"
Python
133
star
18

relative_depth

Code for the NIPS 2016 paper
Lua
124
star
19

CER-MVS

Python
122
star
20

YouTube3D

Code for the CVPR 2019 paper "Learning Single-Image Depth from Videos using Quality Assessment Networks"
Python
106
star
21

Coupled-Iterative-Refinement

Python
105
star
22

pose-ae-demo

Python
97
star
23

MultiSlam_DiffPose

Jupyter Notebook
94
star
24

SNP

Official code for View Synthesis with Sculpted Neural Points
Python
83
star
25

DecorrelatedBN

Code for Decorrelated Batch Normalization
Lua
80
star
26

SpatialSense

An Adversarially Crowdsourced Benchmark for Spatial Relation Recognition
Python
70
star
27

oasis

Code for the CVPR 2020 paper "OASIS: A Large-Scale Dataset for Single Image 3D in the Wild"
MATLAB
64
star
28

selfstudy

Code for reproducing experiments in "How Useful is Self-Supervised Pretraining for Visual Tasks?"
Python
60
star
29

PackIt

Code for reproducing results in ICML 2020 paper "PackIt: A Virtual Environment for Geometric Planning"
Jupyter Notebook
52
star
30

d3dhelper

Unofficial sample code for Distilled 3D Networks (D3D) in Tensorflow.
Jupyter Notebook
48
star
31

Oriented1D

Official code for ICCV 2023 paper "Convolutional Networks with Oriented 1D Kernels"
Python
44
star
32

SOLID

Python
41
star
33

OGNI-DC

[ECCV24] official code for "OGNI-DC: Robust Depth Completion with Optimization-Guided Neural Iterations"
Python
38
star
34

OcMesher

C++
35
star
35

attach-juxtapose-parser

Code for the paper "Strongly Incremental Constituency Parsing with Graph Neural Networks"
Python
34
star
36

surface_normals

Code for the ICCV 2017 paper "Surface Normals in the Wild"
Lua
33
star
37

MetaGen

Code for the paper "Learning to Prove Theorems by Learning to Generate Theorems"
Objective-C++
30
star
38

FormulaNet

Code for FormulaNet in NIPS 2017
Python
29
star
39

Rel3D

Official code for NeurRIPS 2020 paper "Rel3D: A Minimally Contrastive Benchmark for Grounding Spatial Relations in 3D"
Python
26
star
40

selfstudy-render

Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"
Python
22
star
41

think_visually

Code for ACL 2018 paper 'Think Visually: Question Answering through Virtual Imagery'
Python
14
star
42

structured-matching

codes for ECCV 2016
Lua
9
star
43

DPVO_Docker

Shell
8
star
44

uniloss

Python
8
star
45

MetaQNL

Learning Symbolic Rules for Reasoning in Quasi-Natural Language: https://arxiv.org/abs/2111.12038
Julia
6
star
46

PackIt_Extra

Code for generating data in ICML 2020 paper "PackIt: A Virtual Environment for Geometric Planning"
C#
5
star
47

Rel3D_Render

Code for rendering images for NeurRIPS 2020 paper "Rel3D: A Minimally Contrastive Benchmark for Grounding Spatial Relations in 3D"
Python
3
star
48

HYPE-C

Python
1
star