• Stars
    star
    417
  • Rank 103,829 (Top 3 %)
  • Language
    Python
  • Created about 1 year ago
  • Updated 11 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[ICRA 2024] RenderOcc: Vision-Centric 3D Occupancy Prediction with 2D Rendering Supervision. (Former version: UniOcc)

RenderOcc

demo (Visualization of RenderOcc's prediction, which is supervised only with 2D labels.)

INTRODUCTION

RenderOcc is a novel paradigm for training vision-centric 3D occupancy models only with 2D labels. Specifically, we extract a NeRF-style 3D volume representation from multi-view images, and employ volume rendering techniques to establish 2D renderings, thus enabling direct 3D supervision from 2D semantics and depth labels.

demo

Getting Started

  • Installation

  • Prepare Dataset

  • Train

    # Train RenderOcc with 8 GPUs
    ./tools/dist_train.sh ./configs/renderocc/renderocc-7frame.py 8
  • Evaluation

    # Eval RenderOcc with 8 GPUs
    ./tools/dist_test.sh ./configs/renderocc/renderocc-7frame.py ./path/to/ckpts.pth 8
  • Visualization

    # Dump predictions
    bash tools/dist_test.sh configs/renderocc/renderocc-7frame.py renderocc-7frame-12e.pth 1 --dump_dir=work_dirs/output
    # Visualization (select scene-id)
    python tools/visualization/visual.py work_dirs/output/scene-xxxx

    (The pkl file needs to be regenerated for visualization.)

Model Zoo

Method Backbone 2D-to-3D Lr Schd GT mIoU Config Log Download
RenderOcc Swin-Base BEVStereo 12ep 2D 24.46 config log model
  • More model weights will be released later.

Acknowledgement

Many thanks to these excellent open source projects:

Related Projects:

BibTeX

If this work is helpful for your research, please consider citing:

@article{pan2023renderocc,
  title={RenderOcc: Vision-Centric 3D Occupancy Prediction with 2D Rendering Supervision},
  author={Pan, Mingjie and Liu, Jiaming and Zhang, Renrui and Huang, Peixiang and Li, Xiaoqi and Liu, Li and Zhang, Shanghang},
  journal={arXiv preprint arXiv:2309.09502},
  year={2023}
}