• Stars
    star
    1,534
  • Rank 30,498 (Top 0.7 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A flexible free and unlimited python tool to translate between different languages in a simple way using multiple translators.

deep-translator

deep-translator-icon


Documentation Status https://img.shields.io/pypi/l/deep-translator https://img.shields.io/pypi/status/deep-translator https://pepy.tech/badge/deep-translator https://img.shields.io/pypi/wheel/deep-translator https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit Twitter URL

Translation for humans

A flexible FREE and UNLIMITED tool to translate between different languages in a simple way using multiple translators.





Motivation

I needed to translate a text using python. It was hard to find a simple way to do it. There are other libraries that can be used for this task, but most of them are buggy, not free, limited, not supported anymore or complex to use.

Therefore, I decided to build this simple tool. It is 100% free, unlimited, easy to use and provides support for all languages.

Basically, my goal was to integrate support for multiple famous translators in this tool.

When you should use it

  • If you want to translate text using python
  • If you want to translate from a file
  • If you want to get translations from many sources and not only one
  • If you want to automate translations
  • If you want to use ChatGpt for translations
  • If you want to compare different translations
  • If you want to detect language automatically

Why you should use it

  • It's the only python tool that integrates many translators
  • Multi language support
  • Support for ChatGpt (version >= 1.11.0)
  • Supports batch translation
  • High level of abstraction
  • Automatic language detection
  • Easy to use and extend
  • Support for most famous universal translators
  • Stable and maintained regularly
  • The API is very easy to use
  • Proxy integration is supported

Features

Installation

Install the stable release:

$ pip install -U deep-translator

$ poetry add deep-translator   # for poetry usage

take a look at the docs if you want to install from source.

Also, you can install extras if you want support for specific use case. For example, translating Docx and PDF files

$ pip install deep-translator[docx]  # add support for docx translation

$ pip install deep-translator[pdf]  # add support for pdf translation

$ pip install deep-translator[ai]   # add support for ChatGpt

$ poetry add deep-translator --extras "docx pdf ai"   # for poetry usage

Quick Start

from deep_translator import GoogleTranslator

# Use any translator you like, in this example GoogleTranslator
translated = GoogleTranslator(source='auto', target='de').translate("keep it up, you are awesome")  # output -> Weiter so, du bist großartig

or using proxies:

from deep_translator import GoogleTranslator

proxies_example = {
    "https": "34.195.196.27:8080",
    "http": "34.195.196.27:8080"
}
translated = GoogleTranslator(source='auto', target='de', proxies=proxies_example).translate("keep it up, you are awesome")  # output -> Weiter so, du bist großartig

or even directly from terminal:

$ deep-translator --source "en" --target "de" --text "hello world"

or shorter

$ dt -tg de -txt "hello world"

Usage

In this section, demos on how to use all different integrated translators in this tool are provided.

Note

You can always pass the languages by the name or by abbreviation.

Example: If you want to use english as a source or target language, you can pass english or en as an argument

Note

For all translators that require an ApiKey, you can either specify it as an argument to the translator class or you can export it as an environment variable, this way you won't have to provide it to the class.

Example: export OPENAI_API_KEY="your_key"

Imports

from deep_translator import (GoogleTranslator,
                             ChatGptTranslator,
                             MicrosoftTranslator,
                             PonsTranslator,
                             LingueeTranslator,
                             MyMemoryTranslator,
                             YandexTranslator,
                             PapagoTranslator,
                             DeeplTranslator,
                             QcriTranslator,
                             single_detection,
                             batch_detection)

Check Supported Languages

Note

You can check the supported languages of each translator by calling the get_supported_languages function.

# default return type is a list
langs_list = GoogleTranslator().get_supported_languages()  # output: [arabic, french, english etc...]

# alternatively, you can the dictionary containing languages mapped to their abbreviation
langs_dict = GoogleTranslator().get_supported_languages(as_dict=True)  # output: {arabic: ar, french: fr, english:en etc...}

Language Detection

Note

You can also detect language automatically. Notice that this package is free and my goal is to keep it free. Therefore, you will need to get your own api_key if you want to use the language detection function. I figured out you can get one for free here: https://detectlanguage.com/documentation

  • Single Text Detection
lang = single_detection('bonjour la vie', api_key='your_api_key')
print(lang) # output: fr
  • Batch Detection
lang = batch_detection(['bonjour la vie', 'hello world'], api_key='your_api_key')
print(lang) # output: [fr, en]

Google Translate

text = 'happy coding'
  • You can use automatic language detection to detect the source language:
translated = GoogleTranslator(source='auto', target='de').translate(text=text)
  • You can pass languages by name or by abbreviation:
translated = GoogleTranslator(source='auto', target='german').translate(text=text)

# Alternatively, you can pass languages by their abbreviation:
translated = GoogleTranslator(source='en', target='de').translate(text=text)
  • You can also reuse the Translator class and change/update its properties.

(Notice that this is important for performance too, since instantiating new objects is expensive)

# let's say first you need to translate from auto to german
my_translator = GoogleTranslator(source='auto', target='german')
result = my_translator.translate(text=text)
print(f"Translation using source = {my_translator.source} and target = {my_translator.target} -> {result}")

# let's say later you want to reuse the class but your target is french now
# This is the best practice and how you should use deep-translator.
# Please don't over-instantiate translator objects without a good reason, otherwise you will run into performance issues
my_translator.target = 'fr'  # this will override the target 'german' passed previously
result = my_translator.translate(text=text)
print(f"Translation using source = {my_translator.source} and target = {my_translator.target} -> {result}")

# you can also update the source language as well
my_translator.source = 'en'  # this will override the source 'auto' passed previously
result = my_translator.translate(text=text)
print(f"Translation using source = {my_translator.source} and target = {my_translator.target} -> {result}")
  • Translate batch of texts
texts = ["hallo welt", "guten morgen"]

# the translate_sentences function is deprecated, use the translate_batch function instead
translated = GoogleTranslator('de', 'en').translate_batch(texts)
  • Translate from a file:
translated = GoogleTranslator(source='auto', target='german').translate_file('path/to/file')

Mymemory Translator

Note

As in google translate, you can use the automatic language detection with mymemory by using "auto" as an argument for the source language. However, this feature in the mymemory translator is not so powerful as in google translate.

  • Simple translation
text = 'Keep it up. You are awesome'

translated = MyMemoryTranslator(source='auto', target='french').translate(text)
  • Translate batch of texts
texts = ["hallo welt", "guten morgen"]

# the translate_sentences function is deprecated, use the translate_batch function instead
translated = MyMemoryTranslator('de', 'en').translate_batch(texts)
  • Translate from file
path = "your_file.txt"

translated = MyMemoryTranslator(source='en', target='fr').translate_file(path)

DeeplTranslator

Note

In order to use the DeeplTranslator translator, you need to generate an api key. Deepl offers a Pro and a free API. deep-translator supports both Pro and free APIs. Just check the examples below. Visit https://www.deepl.com/en/docs-api/ for more information on how to generate your Deepl api key

  • Simple translation
text = 'Keep it up. You are awesome'

translated = DeeplTranslator(api_key="your_api_key", source="en", target="en", use_free_api=True).translate(text)

Note

deep-translator uses free deepl api by default. If you have the pro version then simply set the use_free_api to false.

  • Translate batch of texts
texts = ["hallo welt", "guten morgen"]

# the translate_sentences function is deprecated, use the translate_batch function instead
translated = DeeplTranslator("your_api_key").translate_batch(texts)

QcriTranslator

Note

In order to use the QcriTranslator translator, you need to generate a free api key. Visit https://mt.qcri.org/api/ for more information

  • Check languages
# as a property
print("language pairs: ", QcriTranslator("your_api_key").languages)
  • Check domains
# as a property
print("domains: ", QcriTranslator("your_api_key").domains)
  • Text translation
text = 'Education is great'

translated = QcriTranslator("your_api_key").translate(source='en', target='ar', domain="news", text=text)
# output -> Ψ§Ω„ΨͺΨΉΩ„ΩŠΩ… Ω‡Ωˆ ΨΉΨΈΩŠΩ…

# see docs for batch translation and more.

Linguee Translator

word = 'good'
  • Simple Translation
translated_word = LingueeTranslator(source='english', target='french').translate(word)
  • Return all synonyms or words that match
# set the argument return_all to True if you want to get all synonyms of the word to translate
translated_word = LingueeTranslator(source='english', target='french').translate(word, return_all=True)
  • Translate a batch of words
translated_words = LingueeTranslator(source='english', target='french').translate_words(["good", "awesome"])

PONS Translator

Note

You can pass the languages by the name or by abbreviation just like previous examples using GoogleTranslate

word = 'awesome'
  • Simple Translation
translated_word = PonsTranslator(source='english', target='french').translate(word)

# pass language by their abbreviation
translated_word = PonsTranslator(source='en', target='fr').translate(word)
  • Return all synonyms or words that match
# set the argument return_all to True if you want to get all synonyms of the word to translate
translated_word = PonsTranslator(source='english', target='french').translate(word, return_all=True)
  • Translate a batch of words
translated_words = PonsTranslator(source='english', target='french').translate_words(["good", "awesome"])

Yandex Translator

Note

You need to require a private api key if you want to use the yandex translator. Visit the official website for more information about how to get one

  • Language detection
lang = YandexTranslator('your_api_key').detect('Hallo, Welt')
print(f"language detected: {lang}")  # output -> language detected: 'de'
  • Text translation
# with auto detection | meaning provide only the target language and let yandex detect the source
translated = YandexTranslator('your_api_key').translate(source="auto", target="en", text='Hallo, Welt')
print(f"translated text: {translated}")  # output -> translated text: Hello world

# provide source and target language explicitly
translated = YandexTranslator('your_api_key').translate(source="de", target="en", text='Hallo, Welt')
print(f"translated text: {translated}")  # output -> translated text: Hello world
  • File translation
translated = YandexTranslator('your_api_key').translate_file(source="auto", target="en", path="path_to_your_file")
  • Batch translation
translated = YandexTranslator('your_api_key').translate_batch(source="auto", target="de", batch=["hello world", "happy coding"])

Microsoft Translator

Note

You need to require an api key if you want to use the microsoft translator. Visit the official website for more information about how to get one. Microsoft offers a free tier 0 subscription (2 million characters per month).

text = 'happy coding'
translated = MicrosoftTranslator(api_key='some-key', target='de').translate(text=text)
translated_two_targets = MicrosoftTranslator(api_key='some-key', target=['de', 'ru']).translate(text=text)
translated_with_optional_attr = MicrosoftTranslator(api_key='some-key', target='de', textType='html']).translate(text=text)
  • You can pass languages by name or by abbreviation:
translated = MicrosoftTranslator(api_key='some-key', target='german').translate(text=text)

# Alternatively, you can pass languages by their abbreviation:
translated = MicrosoftTranslator(api_key='some-key', target='de').translate(text=text)
  • Translate batch of texts
texts = ["hallo welt", "guten morgen"]
translated = MicrosoftTranslator(api_key='some-key', target='english').translate_batch(texts)
  • Translate from a file:
translated = MicrosoftTranslator(api_key='some-key', target='german').translate_file('path/to/file')

ChatGpt Translator

Note

You need to install the openai support extra. pip install deep-translator[ai]

Note

You need to require an api key if you want to use the ChatGpt translator. If you have an openai account, you can create an api key (https://platform.openai.com/account/api-keys).

  • Required and optional attributes

    There are two required attributes, namely "api_key" (string) and "target" (string or list). Attribute "source" is optional.

    You can provide your api key as an argument or you can export it as an env var e.g. export OPENAI_API_KEY="your_key"

text = 'happy coding'
translated = ChatGptTranslator(api_key='your_key', target='german').translate(text=text)
  • Translate batch of texts
texts = ["hallo welt", "guten morgen"]
translated = ChatGptTranslator(api_key='some-key', target='english').translate_batch(texts)
  • Translate from a file:
translated = ChatGptTranslator(api_key='some-key', target='german').translate_file('path/to/file')

Papago Translator

Note

You need to require a client id and client secret key if you want to use the papago translator. Visit the official website for more information about how to get one.

text = 'happy coding'
translated = PapagoTranslator(client_id='your_client_id', secret_key='your_secret_key', source='en', target='ko').translate(text=text)  # output: ν–‰λ³΅ν•œ λΆ€ν˜Έν™”

Libre Translator

Note

Libre translate has multiple mirrors which can be used for the API endpoint. Some require an API key to be used. By default the base url is set to libretranslate.de . This can be set using the "base_url" input parameter.

text = 'laufen'
translated = LibreTranslator(source='auto', target='en', base_url = 'https://libretranslate.com/', api_key = 'your_api_key').translate(text=text)  # output: run
  • You can pass languages by name or by abbreviation:
translated = LibreTranslator(source='german', target='english').translate(text=text)

# Alternatively, you can pass languages by their abbreviation:
translated = LibreTranslator(source='de', target='en').translate(text=text)
  • Translate batch of texts
texts = ["hallo welt", "guten morgen"]
translated = LibreTranslator(source='auto', target='en').translate_batch(texts)
  • Translate from a file:
translated = LibreTranslator(source='auto', target='en').translate_file('path/to/file')

TencentTranslator

Note

In order to use the TencentTranslator translator, you need to generate a secret_id and a secret_key. deep-translator supports both Pro and free APIs. Just check the examples below. Visit https://cloud.tencent.com/document/api/551/15619 for more information on how to generate your Tencent secret_id and secret_key.

  • Simple translation
text = 'Hello world'
translated = TencentTranslator(secret_id="your-secret_id", secret_key="your-secret_key" source="en", target="zh").translate(text)
  • Translate batch of texts
texts = ["Hello world", "How are you?"]
translated = TencentTranslator(secret_id="your-secret_id", secret_key="your-secret_key" source="en", target="zh").translate_batch(texts)
  • Translate from a file:
translated = TencentTranslator(secret_id="your-secret_id", secret_key="your-secret_key" source="en", target="zh").translate_file('path/to/file')

BaiduTranslator

Note

In order to use the BaiduTranslator translator, you need to generate a secret_id and a secret_key. deep-translator supports both Pro and free APIs. Just check the examples below. Visit http://api.fanyi.baidu.com/product/113 for more information on how to generate your Baidu appid and appkey.

  • Simple translation
text = 'Hello world'
translated = BaiduTranslator(appid="your-appid", appkey="your-appkey" source="en", target="zh").translate(text)
  • Translate batch of texts
texts = ["Hello world", "How are you?"]
translated = BaiduTranslator(appid="your-appid", appkey="your-appkey" source="en", target="zh").translate_batch(texts)
  • Translate from a file:
translated = BaiduTranslator(appid="your-appid", appkey="your-appkey" source="en", target="zh").translate_file('path/to/file')

BaiduTranslator

Note

In order to use the BaiduTranslator translator, you need to generate a secret_id and a secret_key. deep-translator supports both Pro and free APIs. Just check the examples below. Visit http://api.fanyi.baidu.com/product/113 for more information on how to generate your Baidu appid and appkey.

  • Simple translation
text = 'Hello world'
translated = BaiduTranslator(appid="your-appid", appkey="your-appkey" source="en", target="zh").translate(text)
  • Translate batch of texts
texts = ["Hello world", "How are you?"]
translated = BaiduTranslator(appid="your-appid", appkey="your-appkey" source="en", target="zh").translate_batch(texts)
  • Translate from a file:
translated = BaiduTranslator(appid="your-appid", appkey="your-appkey" source="en", target="zh").translate_file('path/to/file')

Proxy usage

deep-translator provides out of the box usage of proxies. Just define your proxies config as a dictionary and pass it to the corresponding translator. Below is an example using the GoogleTranslator, but this feature can be used with all supported translators.

from deep_translator import GoogleTranslator

# define your proxy configs:
proxies_example = {
    "https": "your https proxy",  # example: 34.195.196.27:8080
    "http": "your http proxy if available"
}
translated = GoogleTranslator(source='auto', target='de', proxies=proxies_example).translate("this package is awesome")

File Translation

Deep-translator (version >= 1.9.4) supports not only text file translation, but docx and PDF files too. However, you need to install deep-translator using the specific extras.

For docx translation:

pip install deep-translator[docx]

For PDF translation:

pip install deep-translator[pdf]

Usage from Terminal

Deep-translator supports a series of command line arguments for quick and simple access to the translators directly in your console.

Note

The program accepts deep-translator or dt as a command, feel free to substitute whichever you prefer.

For a list of available translators:

$ deep-translator list

To translate a string or line of text:

$ deep_translator google --source "english" --target "german" --text "happy coding"

Alternate short option names, along with using language abbreviations:

$ deep_translator google -src "en" -tgt "de" -txt "happy coding"

Finally, to retrieve a list of available languages for a given translator:

$ deep-translator languages google

Tests

Developers can install the development version of deep-translator and execute unit tests to verify functionality. For more information on doing this, see the contribution guidelines

Links

Check this article on medium to know why you should use the deep-translator package and how to translate text using python. https://medium.com/@nidhalbacc/how-to-translate-text-with-python-9d203139dcf5

Help

If you are facing any problems, please feel free to open an issue. Additionally, you can make contact with the author for further information/questions.

Do you like deep-translator? You can always help the development of this project by:

  • Following on github and/or twitter
  • Promote the project (ex: by giving it a star on github)
  • Watch the github repo for new releases
  • Tweet about the package
  • Help others with issues on github
  • Create issues and pull requests
  • Sponsor the project

Next Steps

Take a look in the examples folder for more :) Contributions are always welcome. Read the Contribution guidelines Here

Credits

Many thanks to @KirillSklyarenko for his work on integrating the microsoft translator

License

MIT license

Copyright (c) 2020-present, Nidhal Baccouri

Swagger UI

deep-translator offers an api server for easy integration with other applications. Non python applications can communicate with the api directly and leverage the features of deep-translator

Access the api here: https://deep-translator-api.azurewebsites.net/docs

The Translator++ mobile app

Icon of the app

You can download and try the app on play store https://play.google.com/store/apps/details?id=org.translator.translator&hl=en_US&gl=US

After developing the deep-translator, I realized how cool this would be if I can use it as an app on my mobile phone. Sure, there is google translate, pons and linguee apps etc.. but isn't it cooler to make an app where all these translators are integrated?

Long story short, I started working on the app. I decided to use the kivy framework since I wanted to code in python and to develop a cross platform app. I open sourced the Translator++ app on my github too. Feel free to take a look at the code or make a pull request ;)

Note

The Translator++ app is based on the deep-translator package. I just built the app to prove the capabilities of the deep-translator package ;)

I published the first release on google play store on 02-08-2020

Here are some screenshots:

  • Phone

screenshot1

screenshot2

spinner

  • Tablet:

screenshot3

Website & Desktop app

Currently, there are propositions for a website and/or desktop app based on deep-translator. You can follow the issue here: #144

More Repositories

1

igel

a delightful machine learning tool that allows you to train, test, and use models without writing code
Python
3,080
star
2

igel-ui

Igel UI is the official app that allows you to easily interacte with igel from a simple UI instead of using the terminal.
HTML
78
star
3

gpx-converter

python package for manipulating gpx files and easily converting gpx to other different formats
Python
70
star
4

Translator-pp

A cross platform all in one translator app
Python
27
star
5

b-rabbit

A thread safe library that aims to provide a simple API for interfacing with RabbitMQ. Built on top of rabbitpy, the library make it very easy to use the RabbitMQ message broker with just few lines of code. It implements all messaging pattern used by message brokers
Python
26
star
6

goli

A sophisticated boilerplate generator based on best practices and modern useful templates
Python
22
star
7

dolmetscher

a simple package to translate between languages using multiple integrated translators
JavaScript
16
star
8

deep-translator-api

API based on the deep-translator pakcage
Python
13
star
9

wrabbity

a node package that provides a simple API for interfacing with RabbitMq
JavaScript
6
star
10

deep-translator-dektop-app

desktop translation app based on deep-translator
4
star
11

deep-translator-website

A website based on the deep-translator package
CSS
4
star
12

Nodejs-chat-app

A basic chat app build with node js
JavaScript
3
star
13

azpipeline

Interact with azure pipeline using python
Python
3
star
14

buildonic

A lightweight interactive CLI application to easily build ionic apps for android and ios
JavaScript
3
star
15

House_prices_prediction_keras

House prices predictions with Keras
Jupyter Notebook
2
star
16

Regression-Pytorch

Regression Example with Pytorch
Jupyter Notebook
2
star
17

Beer-Consumption

Beer Consumption in Sao Paolo Prediction with Pytorch
Jupyter Notebook
2
star
18

google-search-scraper

a python package to scrape google search results
Python
2
star
19

Time_series_prediction

Time series predictions examples using different nn architectures like CNN, LSTM with keras
Jupyter Notebook
2
star
20

indians-diabetes-

Classification Example on the Indians diabetes dataset with keras
Jupyter Notebook
1
star
21

fuel_consumption_prediction

Jupyter Notebook
1
star
22

RNN_MNIST

Simple Classification Example on the MNIST Dataset using Recurrent neural Network
Jupyter Notebook
1
star
23

model_params_keras

an approach to choose the best Model Parameters with keras
Jupyter Notebook
1
star
24

FashionMNIST

FashionMNIST classification with Pytorch
Jupyter Notebook
1
star
25

machine-learning-Stanford-online-

Machine Learning solutions of the Standford Online course by Andrew ng
MATLAB
1
star
26

LR_finder_example

example using LR_finder to find a good value for learning rate in a Deep Learning Project using Pytorch
Jupyter Notebook
1
star
27

Mobile-Price-Prediction

Example of Linear Regression and Data preprocessing with Pytorch
Jupyter Notebook
1
star
28

Regression_analysis_pytorch

Jupyter Notebook
1
star
29

Genetic-Algorithm

Genetic Algorithm Example in Python
Jupyter Notebook
1
star
30

Authentication-app-

first Authentication app using node js
JavaScript
1
star
31

nidhaloff.github.io

JavaScript
1
star
32

keras_fashionMNIST

Example of Classification on the FashionMnist dataset using keras
Jupyter Notebook
1
star
33

keras_mnist

a Keras Implementation for classifying handwriting on the MNIST Dataset
Jupyter Notebook
1
star
34

plot_best_fit_line

Jupyter Notebook
1
star
35

MLP_Pytorch

Multilayer perceptron Implementation using pytorch
Jupyter Notebook
1
star
36

EasyTodos

easy todo app based on ionic-react
TypeScript
1
star
37

HandWriting-Recognition

a machine learning program to recognize Hand writing with scikit Learn
Python
1
star
38

dejunk

a lightweight package that allows you to block any junk and improve your browsing experience
Python
1
star