NLP Profiler
A simple NLP library that allows profiling datasets with one or more text columns.
NLP Profiler returns either high-level insights or low-level/granular statistical information about the text when given a dataset and a column name containing text data, in that column.
In short: Think of it as using the pandas.describe()
function or running Pandas Profiling on your data frame, but for datasets containing text columns rather than the usual columnar datasets.
Table of contents
- Community/Chat/Communication:
- What do you get from the library?
- Requirements
- Getting started
- Notebooks
- Screenshots
- Credits and supporters
- Changes
- License
- Contributing
What do you get from the library?
- Input a Pandas dataframe series as an input parameter.
- You get back a new dataframe with various features about the parsed text per row.
- High-level: sentiment analysis, objectivity/subjectivity analysis, spelling quality check, grammar quality check, ease of readability check, etc...
- Low-level/granular: number of characters in the sentence, number of words, number of emojis, number of words, etc...
- From the above numerical data in the resulting dataframe descriptive statistics can be drawn using the
pandas.describe()
on the dataframe.
See screenshots under the Jupyter section and also under Screenshots for further illustrations.
Under the hood it does make use of a number of libraries that are popular in the AI and ML communities, but we can extend it's functionality by replacing or adding other libraries as well.
A simple notebook have been provided to illustrate the usage of the library.
Please join the Gitter.im community and say "hello" to us, share your feedback, have a fun time with us.
Note: this is a new endeavour and it may have rough edges i.e. NLP_Profiler in its current version is probably NOT capable of doing many things. Many of these gaps are opportunities we can work on and plug, as we go along using it. Please provide constructive feedback to help with the improvement of this library. We just recently achieved this with scaling with larger datasets.
Requirements
- Python 3.7.x or higher.
- Dependencies described in the
requirements.txt
. - High-level including Grammar checks:
- faster processor
- higher RAM capacity
- working disk-space of 1 to 3 GBytes (depending on the dataset size)
- (Optional)
- Jupyter Lab (on your local machine).
- Google Colab account.
- Kaggle account.
- Grammar check functionality:
- Internet access
- Java 8 or higher
Getting started
Installation
For Conda/Miniconda environments:
conda config --set pip_interop_enabled True
pip install "spacy >= 2.3.0,<3.0.0" # in case spacy is not present
python -m spacy download en_core_web_sm
### now perform any of the below pathways/options
For Kaggle environments:
pip uninstall typing # this can cause issues on Kaggle hence removing it helps
Follow any of the remaining installation steps but "avoid" using -U
with pip install
-- again this can cause issues on Kaggle hence not using it helps.
From PyPi:
pip install -U nlp_profiler
From the GitHub repo:
pip install -U git+https://github.com/neomatrix369/nlp_profiler.git@master
From the source:
For library development purposes, see Developer guide
Usage
import nlp_profiler.core as nlpprof
new_text_column_dataset = nlpprof.apply_text_profiling(dataset, 'text_column')
or
from nlp_profiler.core import apply_text_profiling
new_text_column_dataset = apply_text_profiling(dataset, 'text_column')
See Notebooks section for further illustrations.
Developer guide
See Developer guide to know how to build, test, and contribute to the library.
Demo and presentations
Look at a short demo of the NLP Profiler library at one of these:
or you find the rest of the talk here or here for slides | or you find the rest of the talk here or here for slides |
Notebooks
After successful installation of the library, RESTART Jupyter kernels or Google Colab runtimes for the changes to take effect.
See Notebooks for usage and further details.
Screenshots
See Screenshots
Credits and supporters
Changes
See CHANGELOG.md
License
Refer licensing (and warranty) policy.
Contributing
Contributions are Welcome!
Please have a look at the CONTRIBUTING guidelines.
Please share it with the wider community (and get credited for it)!
Go to the NLP page