• Stars
    star
    4,266
  • Rank 10,111 (Top 0.2 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created over 4 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.

MindSpore Logo

PyPI - Python Version PyPI Downloads DockerHub LICENSE Slack PRs Welcome

ζŸ₯ηœ‹δΈ­ζ–‡

What Is MindSpore

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios. MindSpore is designed to provide development experience with friendly design and efficient execution for the data scientists and algorithmic engineers, native support for Ascend AI processor, and software hardware co-optimization. At the meantime MindSpore as a global AI open source community, aims to further advance the development and enrichment of the AI software/hardware application ecosystem.

MindSpore Architecture

For more details please check out our Architecture Guide.

Automatic Differentiation

Currently, there are two automatic differentiation techniques in mainstream deep learning frameworks:

  • Operator Overloading (OO): Overloading the basic operators of the programming language to encapsulate their gradient rules. Record the operation trajectory of the network during forward execution in an operator overloaded manner, then apply the chain rule to the dynamically generated data flow graph to implement automatic differentiation.
  • Source Transformation (ST): This technology is evolving from the functional programming framework and performs automatic differential transformation on the intermediate expression (the expression form of the program during the compilation process) in the form of just-in-time compilation (JIT), supporting complex control flow scenarios, higher-order functions and closures.

PyTorch used OO. Compared to ST, OO generates gradient graph in runtime, so it does not need to take function call and control flow into consideration, which makes it easier to develop. However, OO can not perform gradient graph optimization in compilation time and the control flow has to be unfolded in runtime, so it is difficult to achieve extreme optimization in performance.

MindSpore implemented automatic differentiation based on ST. On the one hand, it supports automatic differentiation of automatic control flow, so it is quite convenient to build models like PyTorch. On the other hand, MindSpore can perform static compilation optimization on neural networks to achieve great performance.

Automatic Differentiation

The implementation of MindSpore automatic differentiation can be understood as the symbolic differentiation of the program itself. Because MindSpore IR is a functional intermediate expression, it has an intuitive correspondence with the composite function in basic algebra. The derivation formula of the composite function composed of arbitrary basic functions can be derived. Each primitive operation in MindSpore IR can correspond to the basic functions in basic algebra, which can build more complex flow control.

Automatic Parallel

The goal of MindSpore automatic parallel is to build a training method that combines data parallelism, model parallelism, and hybrid parallelism. It can automatically select a least cost model splitting strategy to achieve automatic distributed parallel training.

Automatic Parallel

At present, MindSpore uses a fine-grained parallel strategy of splitting operators, that is, each operator in the figure is split into a cluster to complete parallel operations. The splitting strategy during this period may be very complicated, but as a developer advocating Pythonic, you don't need to care about the underlying implementation, as long as the top-level API compute is efficient.

Installation

Pip mode method installation

MindSpore offers build options across multiple backends:

Hardware Platform Operating System Status
Ascend910 Ubuntu-x86 βœ”οΈ
Ubuntu-aarch64 βœ”οΈ
EulerOS-aarch64 βœ”οΈ
CentOS-x86 βœ”οΈ
CentOS-aarch64 βœ”οΈ
GPU CUDA 10.1 Ubuntu-x86 βœ”οΈ
CPU Ubuntu-x86 βœ”οΈ
Ubuntu-aarch64 βœ”οΈ
Windows-x86 βœ”οΈ

For installation using pip, take CPU and Ubuntu-x86 build version as an example:

  1. Download whl from MindSpore download page, and install the package.

    pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl
  2. Run the following command to verify the install.

    import numpy as np
    import mindspore.context as context
    import mindspore.nn as nn
    from mindspore import Tensor
    from mindspore.ops import operations as P
    
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    
    class Mul(nn.Cell):
        def __init__(self):
            super(Mul, self).__init__()
            self.mul = P.Mul()
    
        def construct(self, x, y):
            return self.mul(x, y)
    
    x = Tensor(np.array([1.0, 2.0, 3.0]).astype(np.float32))
    y = Tensor(np.array([4.0, 5.0, 6.0]).astype(np.float32))
    
    mul = Mul()
    print(mul(x, y))
    [ 4. 10. 18.]
    

Use pip mode method to install MindSpore in different environments. Refer to the following documents.

Source code compilation installation

Use the source code compilation method to install MindSpore in different environments. Refer to the following documents.

Docker Image

MindSpore docker image is hosted on Docker Hub, currently the containerized build options are supported as follows:

Hardware Platform Docker Image Repository Tag Description
CPU mindspore/mindspore-cpu x.y.z Production environment with pre-installed MindSpore x.y.z CPU release.
devel Development environment provided to build MindSpore (with CPU backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with CPU backend.
GPU mindspore/mindspore-gpu x.y.z Production environment with pre-installed MindSpore x.y.z GPU release.
devel Development environment provided to build MindSpore (with GPU CUDA10.1 backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with GPU CUDA10.1 backend.

NOTICE: For GPU devel docker image, it's NOT suggested to directly install the whl package after building from the source, instead we strongly RECOMMEND you transfer and install the whl package inside GPU runtime docker image.

  • CPU

    For CPU backend, you can directly pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-cpu:1.1.0
    docker run -it mindspore/mindspore-cpu:1.1.0 /bin/bash
  • GPU

    For GPU backend, please make sure the nvidia-container-toolkit has been installed in advance, here are some install guidelines for Ubuntu users:

    DISTRIBUTION=$(. /etc/os-release; echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$DISTRIBUTION/nvidia-docker.list | tee /etc/apt/sources.list.d/nvidia-docker.list
    
    sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit nvidia-docker2
    sudo systemctl restart docker

    Then edit the file daemon.json:

    $ vim /etc/docker/daemon.json
    {
        "runtimes": {
            "nvidia": {
                "path": "nvidia-container-runtime",
                "runtimeArgs": []
            }
        }
    }

    Restart docker again:

    sudo systemctl daemon-reload
    sudo systemctl restart docker

    Then you can pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-gpu:1.1.0
    docker run -it -v /dev/shm:/dev/shm --runtime=nvidia --privileged=true mindspore/mindspore-gpu:1.1.0 /bin/bash

    To test if the docker image works, please execute the python code below and check the output:

    import numpy as np
    import mindspore.context as context
    from mindspore import Tensor
    from mindspore.ops import functional as F
    
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    
    x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    y = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    print(F.tensor_add(x, y))
    [[[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]]]
    

If you want to learn more about the building process of MindSpore docker images, please check out docker repo for the details.

Quickstart

See the Quick Start to implement the image classification.

Docs

More details about installation guide, tutorials and APIs, please see the User Documentation.

Community

Governance

Check out how MindSpore Open Governance works.

Communication

Contributing

Welcome contributions. See our Contributor Wiki for more details.

Maintenance phases

Project stable branches will be in one of the following states:

State Time frame Summary
Planning 1 - 3 months Features are under planning.
Development 3 months Features are under development.
Maintained 6 - 12 months All bugfixes are appropriate. Releases produced.
Unmaintained 0 - 3 months All bugfixes are appropriate. No Maintainers and No Releases produced.
End Of Life (EOL) N/A Branch no longer accepting changes.

Maintenance status

Branch Status Initial Release Date Next Phase EOL Date
r1.10 Maintained 2023-02-02 Unmaintained
2024-02-02 estimated
r1.9 Maintained 2022-10-26 Unmaintained
2023-10-26 estimated
r1.8 Maintained 2022-07-29 Unmaintained
2023-07-29 estimated
r1.7 End Of Life 2022-04-29 2023-04-29
r1.6 End Of Life 2022-01-29 2023-01-29
r1.5 End Of Life 2021-10-15 2022-10-15
r1.4 End Of Life 2021-08-15 2022-08-15
r1.3 End Of Life 2021-07-15 2022-07-15
r1.2 End Of Life 2021-04-15 2022-04-29
r1.1 End Of Life 2020-12-31 2021-09-30
r1.0 End Of Life 2020-09-24 2021-07-30
r0.7 End Of Life 2020-08-31 2021-02-28
r0.6 End Of Life 2020-07-31 2020-12-30
r0.5 End Of Life 2020-06-30 2021-06-30
r0.3 End Of Life 2020-05-31 2020-09-30
r0.2 End Of Life 2020-04-30 2020-08-31
r0.1 End Of Life 2020-03-28 2020-06-30

Release Notes

The release notes, see our RELEASE.

License

Apache License 2.0

More Repositories

1

models

Python
346
star
2

akg

AKG (Auto Kernel Generator) is an optimizer for operators in Deep Learning Networks, which provides the ability to automatically fuse ops with specific patterns.
Python
213
star
3

docs

MindSpore document
Jupyter Notebook
158
star
4

mindinsight

A visual dashboard for model tuning.
Python
101
star
5

mindarmour

A tool box for MindSpore users to enhance model security and trustworthiness.
Python
90
star
6

graphengine

A connecting link module between frontends and Ascend processors.
C++
85
star
7

mindspore-21-days-tutorials

MindSpore 21 days tutorials.
Python
77
star
8

community

MindSpore community
Python
69
star
9

mindquantum

MindQuantum is a quantum machine learning library that can be used to build and train different quantum neural networks.
Python
69
star
10

ms-operator

MindSpore on Kubernetes
Go
62
star
11

course

MindSpore course
Jupyter Notebook
59
star
12

infrastructure

The codes that boot up the mindspore community
Dockerfile
44
star
13

book

The code repository stores the complete practice code in 'Introduction DeepLearning with MindSpore'.
Python
43
star
14

serving

A lightweight and high-performance service module that helps MindSpore developers efficiently deploy online inference services in the production environment.
C++
39
star
15

mail_templates

The mail templates for community mail server
37
star
16

mindscience

Jupyter Notebook
36
star
17

hub

MindSpore hub
Python
29
star
18

zidongtaichu

Python
19
star
19

contrib

Jupyter Notebook
16
star
20

reinforcement

Python
12
star
21

xai

Python
8
star
22

transformer

Python
4
star
23

graphlearning

Python
3
star
24

mindpandas

Python
3
star
25

llm-serving

Python
3
star
26

recommender

Python
2
star
27

federated

C++
2
star
28

golden-stick

Python
2
star
29

omni-perception-pretrainer

Python
2
star
30

MindFormers

Python
1
star
31

Xihe-docs

Dockerfile
1
star
32

toolkits

Python
1
star