• Stars
    star
    555
  • Rank 80,213 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated about 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Maximum Classifier Discrepancy for Domain Adaptation


This is the implementation of Maximum Classifier Discrepancy for digits classification and semantic segmentation in Pytorch. The code is written by Kuniaki Saito. The work was accepted by CVPR 2018 Oral.

Maximum Classifier Discrepancy for Domain Adaptation: [Project][Paper (arxiv)].


Getting Started

Go to classification or segmentation folder and see the instruction for each task.

Citation

If you use this code for your research, please cite our papers (This will be updated when cvpr paper is publicized).

@article{saito2017maximum,
  title={Maximum Classifier Discrepancy for Unsupervised Domain Adaptation},
  author={Saito, Kuniaki and Watanabe, Kohei and Ushiku, Yoshitaka and Harada, Tatsuya},
  journal={arXiv preprint arXiv:1712.02560},
  year={2017}
}

More Repositories

1

webdnn

The Fastest DNN Running Framework on Web Browser
TypeScript
1,977
star
2

sushi

The Fastest Matrix Library for JavaScript
JavaScript
121
star
3

NeuralMelody

train and generate melody for pop music with recurrent neural networks
Python
96
star
4

dg_mmld

Pytorch Implementation of Domain Generalization Using a Mixture of Multiple Latent Domains
Python
95
star
5

bc_learning_sound

Chainer implementation of between-class learning for sound recognition https://arxiv.org/abs/1711.10282
Python
91
star
6

sukiyaki

Deep Learning Library for JavaScript
JavaScript
78
star
7

sashimi

Distributed Calculation Framework via Browsers
JavaScript
65
star
8

hyperbolic_nn_plusplus

Official PyTorch implementation of Hyperbolic Neural Networks++
Python
63
star
9

bc_learning_image

Chainer implementation of between-class learning for Image classification https://arxiv.org/abs/1711.10284
Python
62
star
10

sushi2

Matrix Library for JavaScript
JavaScript
60
star
11

tempura

Machine Learning Library for Sushi
JavaScript
47
star
12

sukiyaki2

Deep Learning Library for JavaScript
JavaScript
35
star
13

adr_da

Python
34
star
14

FTGAN

Hierarchical Video Generation from Orthogonal Information: Optical Flow and Texture (AAAI-18)
Python
32
star
15

soba

A visualization toolkit coordinating with Sushi and Tempura
JavaScript
26
star
16

bayes-pcca

MATLAB
12
star
17

vqg-unknown

Python
10
star
18

FSDDIM

Official implementation of Fully Spiking Denoising Diffusion Implicit Models
Python
9
star
19

distmljs

Distributed Deep Learning Framework for Web
TypeScript
8
star
20

mil-tokyo.github.io

CSS
6
star
21

webdnn-data

Metal
5
star
22

coaxials

4
star
23

phrase-length-designated-music-generation

4
star
24

b3_seminar_2017

2017εΉ΄εΊ¦ε°‘δΊΊζ•°γ‚ΌγƒŸ
Jupyter Notebook
3
star
25

neural_network

C
3
star
26

sushilab

JavaScript REPL environment for matrix computing
3
star
27

missing-position-prediction

Jupyter Notebook
2
star
28

mppsc-demo

Missing Position Prediction + Story Completion Demo System
Jupyter Notebook
2
star
29

SharedCharacterStories

This directory contains the Shared-Character Stories dataset and annotations for its subset.
Jupyter Notebook
2
star
30

controllable-story-completion-pilot-study

Source code for our pilot study of controllable story completion task, aiming emotion-aware story writing assistance.
Python
2
star
31

jphacks

JavaScript
1
star
32

DTWL_VL

Python
1
star
33

jphacks-web

PHP
1
star
34

Controlling-semantic-segment-of-motion

Python
1
star
35

SEG_HumanEvaluationReasons

1
star
36

b3seminar2014

Python
1
star
37

youtube_startercode

starter code for YouTube8M competition
1
star