• Stars
    star
    4,580
  • Rank 9,280 (Top 0.2 %)
  • Language
    Swift
  • License
    MIT License
  • Created about 9 years ago
  • Updated about 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A powerful Swift programmatic UI layout framework.

logo

Build dynamic and beautiful user interfaces like a boss, with Swift.

License Build Status Badge w/ Version Coverage Status Carthage compatible CocoaPods

Neon is built around how user interfaces are naturally and intuitively designed. No more springs and struts. No more whacky visual format language. No more auto layout constraints. We're not robots, so why should we build our UIs like we are?

Neon has been updated to Swift 3.0, but is still currently in beta!

Install via CocoaPods

You can use Cocoapods to install Neon by adding it to your Podfile:

platform :ios, '9.0'
use_frameworks!
pod 'Neon'

##Manual Installation

  1. Download and drop /Source in your project.
  2. Congratulations!

To get the full benefits import Neon wherever you have a UIView operation:

import UIKit
import Neon

Example

facebook

Rather than design some arbitrary layout for a demonstration, I figured a good test for the practicality of Neon would be to replicate an existing screen from a major app, one that everyone could recognize. The above screenshot on the left is my profile in the Facebook app, and the screenshot on the right is from the Neon demo project.

Facebook's profile screen was surely built using some form of UITableView or UICollectionView, but for the sake of simple demonstration I built the top-most major components of the profile in a normal UIViewController. After all the customization of the subviews to make them as close to Facebook's design as possible (I tried my best), this is what I came up with for the layout:

let isLandscape : Bool = UIDevice.currentDevice().orientation.isLandscape.boolValue
let bannerHeight : CGFloat = view.height() * 0.43
let avatarHeightMultipler : CGFloat = isLandscape ? 0.75 : 0.43
let avatarSize = bannerHeight * avatarHeightMultipler

searchBar.fillSuperview()
bannerImageView.anchorAndFillEdge(.Top, xPad: 0, yPad: 0, otherSize: bannerHeight)
bannerMaskView.fillSuperview()
avatarImageView.anchorInCorner(.BottomLeft, xPad: 15, yPad: 15, width: avatarSize, height: avatarSize)
nameLabel.alignAndFillWidth(align: .ToTheRightCentered, relativeTo: avatarImageView, padding: 15, height: 120)
cameraButton.anchorInCorner(.BottomRight, xPad: 10, yPad: 7, width: 28, height: 28)
buttonContainerView.alignAndFillWidth(align: .UnderCentered, relativeTo: bannerImageView, padding: 0, height: 62)
buttonContainerView.groupAndFill(group: .Horizontal, views: [postButton, updateInfoButton, activityLogButton, moreButton], padding: 10)
buttonContainerView2.alignAndFillWidth(align: .UnderCentered, relativeTo: buttonContainerView, padding: 0, height: 128)
buttonContainerView2.groupAndFill(group: .Horizontal, views: [aboutView, photosView, friendsView], padding: 10)

portrait

Looks pretty good on every device size! Now, keep in mind you'll probably want constants defined for many of these size/padding values, in order to keep the code cleaner and easier to maintain, but I decided to use real numbers for most of the values to make the code less obscure when new people are reading through the demonstration. Now, unlike Facebook's iPhone app the layout built with Neon is dynamic. It is able to handle rotation on all-sized devices with no problem:

landscape

###Not bad for 10 lines of code!

Here's an intentionally convoluted example to show how easy it is to build very complex and dynamic layouts with Neon. The following layout was created with only 20 lines of code. That's one line of code per view! While impressive, this layout is horrifying and should never be used in an actual app... ever...

Demo

Anchoring Views

Center

There are a few ways you can anchor views using Neon, and the first and most simple is anchoring a view in the center of its superview:

view1.anchorInCenter(width: size, height: size)

Center

Filling Superview

Sometimes you want a view to fill its superview entirely, which couldn't be easier.

view.fillSuperview()

Optionally, if you want a view to fill its superview with padding, you can provide padding instead:

view1.fillSuperview(left: padding, right: padding, top: padding, bottom: padding)

Fill

Corner

The second anchoring method is anchoring a view in its superview's Corner. As you might have guessed, the four corners are .TopLeft, .TopRight, .BottomLeft, .BottomRight, and coupled with the anchorInCorner() function, you can easily anchor a view in any corner like this:

view1.anchorInCorner(.TopLeft, xPad: padding, yPad: padding, width: size, height: size)
view2.anchorInCorner(.TopRight, xPad: padding, yPad: padding, width: size, height: size)
view3.anchorInCorner(.BottomLeft, xPad: padding, yPad: padding, width: size, height: size)
view4.anchorInCorner(.BottomRight, xPad: padding, yPad: padding, width: size, height: size)

Corner

Edge

Edge is another pretty obvious one to follow - it specifies on what edge of its superview a view will be anchored to. The four types are .Top, .Left, .Bottom, or .Right, and similar to previous examples, you can use the anchorToEdge() function to anchor a view to an edge:

view1.anchorToEdge(.Top, padding: padding, width: size, height: size)
view2.anchorToEdge(.Left, padding: padding, width: size, height: size)
view3.anchorToEdge(.Bottom, padding: padding, width: size, height: size)
view4.anchorToEdge(.Right, padding: padding, width: size, height: size)

Edge

Filling an edge

Sometimes, you want to anchor a view against an edge, filling that edge; imagine something like a banner photo for a profile page. Again, this is made as simple as possible using the anchorAndFillEdge() function:

view1.anchorAndFillEdge(.Top, xPad: padding, yPad: padding, otherSize: size)
view2.anchorAndFillEdge(.Bottom, xPad: padding, yPad: padding, otherSize: size)
view3.anchorAndFillEdge(.Left, xPad: padding, yPad: padding, otherSize: size)
view4.anchorAndFillEdge(.Right, xPad: padding, yPad: padding, otherSize: size)

Fill Edge

Note that anchorAndFillEdge() accepts a parameter called otherSize. That parameter is used to set the other size that isn't automatically calculated by filling the edge, meaning that if you specify that you want to anchor to and fill the top edge, the width will be automatically calculated, but the height is still unknown, so the value passed in to otherSize will be used to set the height. Subsequently, if you want to anchor to and fill the left edge, the height is automatically calculated and otherSize will be used to set the width of the view.

Align

Now that we've anchored primary views, we can start making our UI more complex by aligning other views relative to other sibling views, using the (you guessed it) Align value. Sibling views are views that share the same superview directly. There are twelve Align types, and they are all pretty self-explanatory - here's an example using all twelve with the align() function:

view1.align(.AboveMatchingLeft, relativeTo: anchorView, padding: padding, width: size, height: size)
view2.align(.AboveCentered, relativeTo: anchorView, padding: padding, width: size, height: size)
view3.align(.AboveMatchingRight, relativeTo: anchorView, padding: padding, width: size, height: size)
view4.align(.ToTheRightMatchingTop, relativeTo: anchorView, padding: padding, width: size, height: size)
view5.align(.ToTheRightCentered, relativeTo: anchorView, padding: padding, width: size, height: size)
view6.align(.ToTheRightMatchingBottom, relativeTo: anchorView, padding: padding, width: size, height: size)
view7.align(.UnderMatchingRight, relativeTo: anchorView, padding: padding, width: size, height: size)
view8.align(.UnderCentered, relativeTo: anchorView, padding: padding, width: size, height: size)
view9.align(.UnderMatchingLeft, relativeTo: anchorView, padding: padding, width: size, height: size)
view10.align(.ToTheLeftMatchingBottom, relativeTo: anchorView, padding: padding, width: size, height: size)
view11.align(.ToTheLeftCentered, relativeTo: anchorView, padding: padding, width: size, height: size)
view12.align(.ToTheLeftMatchingTop, relativeTo: anchorView, padding: padding, width: size, height: size)

Align

Align and fill

You don't always know or want to specify the size of a view that you want to layout relative to another, but rather you want to either fill the width, height, or the entire rest of the superview, after aligning with the sibling. Combined with all the different alignment types discussed earlier, we're starting to see how more complex layouts can be built very easily:

view2.alignAndFillWidth(align: .ToTheRightMatchingTop, relativeTo: view1, padding: padding, height: size / 2.0)
view4.alignAndFillHeight(align: .AboveCentered, relativeTo: view3, padding: padding, width: size / 2.0)
view6.alignAndFill(align: .ToTheLeftMatchingTop, relativeTo: view5, padding: padding)

Align Fill

Align between

Sometimes you want a view to sit between to other views, filling the space between them. Using alignBetweenHorizontal() and alignBetweenVertical(), doing that is super easy! Choose one of your sibling views you want to align your view relative to and pass that in as your primaryView. We will use the specified align parameter to match that primaryView appropriately, and automatically fill either the horizontal or vertical span between the it and the secondaryView.

view1.alignBetweenHorizontal(align: .ToTheRightMatchingTop, primaryView: anchorViewA, secondaryView: anchorViewB, padding: padding, height: size)
view2.alignBetweenVertical(align: .UnderCentered, primaryView: anchorViewB, secondaryView: anchorViewD, padding: padding, width: size)
view3.alignBetweenHorizontal(align: .ToTheLeftMatchingBottom, primaryView: anchorViewD, secondaryView: anchorViewC, padding: padding, height: size)
view4.alignBetweenVertical(align: .AboveMatchingRight, primaryView: anchorViewC, secondaryView: anchorViewA, padding: padding, width: size)

Align Between Fill

What about labels?

One of the more complicated parts of working with dynamic layouts, is dealing with labels that may have 1 -> n lines, and as such passing in a specific height isn't always possible without causing a migraine. Neon makes this easy by introducing the AutoHeight constant. Pass this value into methods that accept a height param, and we will first set the width of the frame, tell the view to sizeToFit() so the height is automatically set based on its contents, and then align the view appropriately. For example:

testLabel.alignBetweenHorizontal(align: .ToTheRightMatchingBottom, primaryView: anchorViewA, secondaryView: anchorViewB, padding: padding, height: AutoHeight)

Auto Height 1

Note that changing the text to something with more characters still produces the same desired result:

Auto Height 2

It's important to note that the using AutoHeight with something like a CALayer, or passing it in to any of the grouping methods (see below) will have undesired consequences, as it almost doesn't make sense in this context. Use AutoHeight with anything that implements sizeToFit() and you should be OK. The vast majority of cases where you'll want to use this is with UILabel objects.

What if I don't want to align them perfectly?

Sometimes you don't want your views to align with their sibling views exactly - you may want to align them relative to their siblings, but with a slight offset. You can do this by adding the optional offset parameter to any of the above align methods to produce something like the following:

view1.align(.ToTheRightMatchingTop, relativeTo: anchorViewA, padding: padding, width: size, height: size, offset: offset)
view2.align(.UnderMatchingLeft, relativeTo: anchorViewA, padding: padding, width: size, height: size, offset: offset)

Offset

Grouping

Another common use-case is the grouping of sibling views, aligned in a row or column. Using what we've already learned about anchoring views in the center, in a corner, or against an edge, we can also do the same with groups of views!

The primary difference with grouping, is that it is done by the parent view, or superview of a group of views. For example, let's let two different views center a group of their subviews in each of the two different Group configurations, .Horizontal and .Vertical:

anchorViewA.groupInCenter(group: .Horizontal, views: [view1, view2, view3], padding: padding, width: size, height: size)
anchorViewB.groupInCenter(group: .Vertical, views: [view4, view5, view6], padding: padding, width: size, height: size)

Group in center

How about grouping views in the corner?

anchorViewA.groupInCorner(group: .Horizontal, views: [view1, view2, view3], inCorner: .TopLeft, padding: padding, width: size, height: size)
anchorViewB.groupInCorner(group: .Vertical, views: [view4, view5, view6], inCorner: .BottomRight, padding: padding, width: size, height: size)

Group in corner

As you might have expected, you can also group either horizontally and vertically against any edge as well:

anchorViewA.groupAgainstEdge(group: .Horizontal, views: [view1, view2, view3], againstEdge: .Left, padding: padding, width: size, height: size)
anchorViewB.groupAgainstEdge(group: .Vertical, views: [view4, view5, view6], againstEdge: .Bottom, padding: padding, width: size, height: size)

Group against edge

Grouping views relative to a sibling view can be done as well:

view.groupAndAlign(group: .Horizontal, andAlign: .ToTheRightMatchingTop, views: [view1, view2, view3], relativeTo: anchorViewA, padding: padding, width: size, height: size)
view.groupAndAlign(group: .Vertical, andAlign: .UnderCentered, views: [view4, view5, view6], relativeTo: anchorViewA, padding: padding, width: size, height: size)

Group relative

You can also specify that you want a group of subviews to fill their superview, either horizontally or vertically:

anchorViewA.groupAndFill(group: .Horizontal, views: [view1, view2, view3], padding: padding)
anchorViewB.groupAndFill(group: .Vertical, views: [view4, view5, view6], padding: padding)

Group and fill

License

The source is made available under the MIT license. See LICENSE.txt for details.

More Repositories

1

Onboard

An iOS framework to easily create a beautiful and engaging onboarding experience with only a few lines of code.
Objective-C
6,458
star
2

Facade

Programmatic view layout for the rest of us.
Objective-C
688
star
3

Organic

The intuitive UITableViewController.
Objective-C
645
star
4

MAThemeKit

Create an iOS app color theme using a single line of code.
Objective-C
552
star
5

MAFormViewController

Quick and easy iOS forms.
Objective-C
289
star
6

xkcd-Open-Source

A free and open source xkcd comic reader for iOS.
Objective-C
256
star
7

Follower

Track trip distance, speed, altitude, and duration like a boss.
Objective-C
197
star
8

Wethr

Wethr provides developers the ability to add location-based current weather conditions to their views as simply as adding any UIView.
Objective-C
170
star
9

Evolve

An Evolution Simulation Engine written in Objective-C.
Objective-C
73
star
10

MALoggingViewController

MALoggingViewController is a real-time pseudo-console you can embed in your application, perfect for testing and debugging in the real world. Whether you are determining the reliability of network traffic while driving through areas with poor service, testing push notifications on ad-hoc builds while not connected to Xcode, or working out those pesky Core Location bugs, there's no need to carry around half of your development environment with you. No more driving around town with the Xcode console open, or having to handle logging to files and emailing them later to figure out what the heck happened - you can see all the data on your device, anywhere, in real time.
Objective-C
53
star
11

MAPageViewController

MAPageViewController is a simple wrapper around the most common boiler-plate UIPageViewController setup.
Swift
51
star
12

MAActionCell

Objective-C
34
star
13

MATextFieldCell

MATextFieldCell is a drop-in subclass of UITableViewCell, written in Swift, used for drastically streamlining UITableView-based form creation.
Swift
22
star
14

Essentials

A curated list of things I wish I knew about Objective-C, Xcode, and Cocoa Touch when I started programming iOS apps.
Objective-C
15
star
15

MADial

MADial and MATimerDial are UIViews that can quickly and easily be created to add slick circular sliders or minute/second timers to your views.
Objective-C
10
star
16

MontyHall

A swift implementation of the famous Monty Hall problem, attempting to explain the counter-intuitive nature of the puzzle.
Swift
4
star
17

Swift-State-Machine

A swift implementation of the state machine design pattern - with a demo implementation.
Swift
1
star