UNMAINTAINED
This codebase is no longer maintained as we moved towards nmtpytorch.
If you use nmtpy, you may want to cite the following paper:
@article{nmtpy2017,
author = {Ozan Caglayan and
Mercedes Garc\'{i}a-Mart\'{i}nez and
Adrien Bardet and
Walid Aransa and
Fethi Bougares and
Lo\"{i}c Barrault},
title = {NMTPY: A Flexible Toolkit for Advanced Neural Machine Translation Systems},
journal = {Prague Bull. Math. Linguistics},
volume = {109},
pages = {15--28},
year = {2017},
url = {https://ufal.mff.cuni.cz/pbml/109/art-caglayan-et-al.pdf},
doi = {10.1515/pralin-2017-0035},
timestamp = {Tue, 12 Sep 2017 10:01:08 +0100}
}
List of Important Recent Changes
- Model checkpoints were unnecessarily larger by 30% because of a storing format issue. This is fixed now by https://github.com/lium-lst/nmtpy/commit/0721f34924d23b02caca52e8c3fcbcaafbb4ef41.
Factored NMT
attention_factors_seplogits.py
is removed and its functionality is added toattention_factors
model as a configuration switch:sep_h2olayer: True
.
NMT
tied_trg_emb: True/False
is replaced withtied_emb: False/2way/3way
to also support the sharing of "all" embeddings throughout the network.
Introduction
nmtpy is a suite of Python tools, primarily based on the starter code provided in dl4mt-tutorial for training neural machine translation networks using Theano. The basic motivation behind forking dl4mt-tutorial was to create a framework where it would be easy to implement a new model by just copying and modifying an existing model class (or even inheriting from it and overriding some of its methods).
To achieve this purpose, nmtpy tries to completely isolate training loop, beam search, iteration and model definition:
nmt-train
script to start a training experimentnmt-translate
to produce model-agnostic translations. You just pass a trained model's checkpoint file and it does its job.nmt-rescore
to rescore translation hypotheses using an nmtpy model.- An abstract
BaseModel
class to derive from to define your NMT architecture. - An abstract
Iterator
to derive from for your custom iterators.
A non-exhaustive list of differences between nmtpy and dl4mt-tutorial is as follows:
- No shell script, everything is in Python
- Overhaul object-oriented refactoring of the code: clear separation of API and scripts that interface with the API
- INI style configuration files to define everything regarding a training experiment
- Transparent cleanup mechanism to kill stale processes, remove temporary files
- Simultaneous logging of training details to stdout and log file
- Supports out-of-the-box BLEU, METEOR and COCO eval metrics
- Includes subword-nmt utilities for training and applying BPE model (NOTE: This may change as the upstream subword-nmt moves forward as well.)
- Plugin-like text filters for hypothesis post-processing (Example: BPE, Compound, Char2Words for Char-NMT)
- Early-stopping and checkpointing based on perplexity, BLEU or METEOR (Ability to add new metrics easily)
- Single
.npz
file to store everything about a training experiment - Automatic free GPU selection and reservation using
nvidia-smi
- Shuffling support between epochs:
- Simple shuffle
- Homogeneous batches of same-length samples to improve training speed
- Improved parallel translation decoding on CPU
- Forced decoding i.e. rescoring using NMT
- Export decoding informations into
json
for further visualization of attention coefficients - Improved numerical stability and reproducibility
- Glorot/Xavier, He, Orthogonal weight initializations
- Efficient SGD, Adadelta, RMSProp and ADAM: Single forward/backward theano function without intermediate variables
- Ability to stop updating a set of weights by recompiling optimizer
- Several recurrent blocks:
- GRU, Conditional GRU (CGRU) and LSTM
- Multimodal attentive CGRU variants
- Layer Normalization support for GRU
- 2-way or 3-way tied target embeddings
- Simple/Non-recurrent Dropout, L2 weight decay
- Training and validation loss normalization for comparable perplexities
- Initialization of a model with a pretrained NMT for further finetuning
Models
It is advised to check the actual model implementations for the most up-to-date informations as what is written may become outdated.
attention.py
Attentional NMT: This is the basic attention based NMT from dl4mt-tutorial
improved in different ways:
- 3 forward dropout layers after source embeddings, source context and before softmax managed by the configuration parameters
emb_dropout, ctx_dropout, out_dropout
. - Layer normalization for source encoder (
layer_norm:True|False
) - Tied embeddings (
tied_emb:False|2way|3way
)
This model uses the simple BitextIterator
i.e. it directly reads plain parallel text files as defined in the experiment configuration file. Please see this monomodal example for usage.
fusion*py
Multimodal NMT / Image Captioning: These fusion
models derived from attention.py
and basefusion.py
implement several multimodal NMT / Image Captioning architectures detailed in the following papers:
The models are separated into 8 files implementing their own multimodal CGRU differing in the way the attention is formulated in the decoder (4 ways) x the way the multimodal contexts are fusioned (2 ways: SUM/CONCAT). These models also use a different data iterator, namely WMTIterator
that requires converting the textual data into .pkl
as in the multimodal example.
The WMTIterator
only knows how to handle the ResNet-50 convolutional features that we provide in the examples page. If you would like to use FC-style fixed-length vectors or other types of multimodal features, you need to write your own iterator.
attention_factors.py
Factored NMT: The model file attention_factors.py
corresponds to the following paper:
In the examples folder of this repository, you can find data and a configuration file to run this model.
rnnlm.py
RNNLM: This is a basic recurrent language model to be used with nmt-test-lm
utility.
Requirements
You need the following Python libraries installed in order to use nmtpy:
-
numpy
-
Theano >= 0.9
-
We recommend using Anaconda Python distribution which is equipped with Intel MKL (Math Kernel Library) greatly improving CPU decoding speeds during beam search. With a correct compilation and installation, you should achieve similar performance with OpenBLAS as well but the setup procedure may be difficult to follow for inexperienced ones.
-
nmtpy only supports Python 3.5+, please see pythonclock.org
-
Please note that METEOR requires a Java runtime so
java
should be in your$PATH
.
Additional data for METEOR
Before installing nmtpy, you need to run scripts/get-meteor-data.sh
to download METEOR paraphrase files.
Installation
$ python setup.py install
Note: When you add a new model under models/
it will not be directly available in runtime
as it needs to be installed as well. To avoid re-installing each time, you can use development mode with python setup.py develop
which will directly make Python see the git
folder as the library content.
Ensuring Reproducibility in Theano
(Update: Theano 1.0 includes a configuration option deterministic = more
that obsoletes the below patch.)
When we started to work on dl4mt-tutorial, we noticed an annoying reproducibility problem where multiple runs of the same experiment (same seed, same machine, same GPU) were not producing exactly the same training and validation losses after a few iterations.
The solution that was discussed in Theano
issues was to replace a non-deterministic GPU operation with its deterministic equivalent. To achieve this,
you should patch your local Theano v0.9.0 installation using this patch unless upstream developers add a configuration option to .theanorc
.
Configuring Theano
Here is a basic .theanorc
file (Note that the way you install CUDA, CuDNN
may require some modifications):
[global]
# Not so important as nmtpy will pick an available GPU
device = gpu0
# We use float32 everywhere
floatX = float32
# Keep theano compilation in RAM if you have a 7/24 available server
base_compiledir=/tmp/theano-%(user)s
# For Theano >= 0.10, if you want exact same results for each run
# with same seed
deterministic=more
[cuda]
root = /opt/cuda-8.0
[dnn]
# Make sure you use CuDNN as well
enabled = auto
library_path = /opt/CUDNN/cudnn-v5.1/lib64
include_path = /opt/CUDNN/cudnn-v5.1/include
[lib]
# Allocate 95% of GPU memory once
cnmem = 0.95
You may also want to try the new GPU backend after
installing libgpuarray. In order to do so,
pass GPUARRAY=1
into the environment when running nmt-train
:
$ GPUARRAY=1 nmt-train -c <conf file> ...
Checking BLAS configuration
Recent Theano versions can automatically detect correct MKL flags. You should obtain a similar output after running the following command:
$ python -c 'import theano; print theano.config.blas.ldflags'
-L/home/ozancag/miniconda/lib -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread -lm -lm -Wl,-rpath,/home/ozancag/miniconda/lib
Acknowledgements
nmtpy includes code from the following projects:
- dl4mt-tutorial
- Scripts from subword-nmt
- Ensembling and alignment collection from nematus
multi-bleu.perl
from mosesdecoder- METEOR v1.5 JAR from meteor
- Sorted data iterator, coco eval script and LSTM from arctic-captions
pycocoevalcap
from coco-caption
See LICENSE file for license information.