• Stars
    star
    397
  • Rank 108,561 (Top 3 %)
  • Language
    C++
  • License
    BSD 3-Clause "New...
  • Created about 8 years ago
  • Updated about 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

An Architecture for the Versatile Control of Legged Robots

Free Gait

An Architecture for the Versatile Control of Legged Robots

NOTICE: This software is not supported anymore! The authors of this software have changed their affiliation and do not work on this project anymore. Please excuse any inconvenience this might cause. If you are interested in working with the ANYmal robot, please reach out to ANYbotics.

Free Gait Applications

Free Gait is a software framework for the versatile, robust, and task-oriented control of legged robots. The Free Gait interface defines a whole-body abstraction layer to accommodate a variety of task-space control commands such as end effector, joint, and base motions. The defined motion tasks are tracked with a feedback whole-body controller to ensure accurate and robust motion execution even under slip and external disturbances. The application of this framework includes intuitive tele-operation of the robot, efficient scripting of behaviors, and fully autonomous operation with motion and footstep planners.

The source code is released under a BSD 3-Clause license.

Author: Péter Fankhauser
With contributions by: Samuel Bachmann, Dario Bellicoso, Thomas Bi, Remo Diethelm, Christian Gehring

This projected was initially developed at RSL, ETH Zurich.

Build Status

Publications

If you use this work in an academic context, please cite the following publication(s):

  • P. Fankhauser, D. Bellicoso, C. Gehring, R. Dubé, A. Gawel, M. Hutter, "Free Gait – An Architecture for the Versatile Control of Legged Robots", in IEEE-RAS International Conference on Humanoid Robots, 2016. (PDF)

      @inproceedings{Fankhauser2016FreeGait,
          author = {Fankhauser, P{\'{e}}ter and Bellicoso, C. Dario and Gehring, Christian and Dub{\'{e}}, Renaud and Gawel, Abel and Hutter, Marco},
          booktitle = {IEEE-RAS International Conference on Humanoid Robots},
          title = {{Free Gait – An Architecture for the Versatile Control of Legged Robots}},
          year = {2016},
      }
    

Unit Tests

catkin build free_gait_core --no-deps --verbose --catkin-make-args run_tests

Overview

This video shows some of the applications of Free Gait.

Free Gait Notions and Coordinate Systems Free Gait Motion Examples Free Gait Control Scheme
Motions are based on a combination of (possibly multiple) leg motions and a base motion per command (step). The command structure allows to control legged robots in various ways. Motion goals are commanded through the Free Gait API to the whole-body motion controller.

Usage

This video presents an overview over the tools provided in Free Gait.

Free Gait Actions

Free Gait actions are libraries and scripts that define motions using the Free Gait API (for ROS ). For ROS, these actions can be write in any language with a ROS client library using the message and action definitions in free_gait_msgs. For C++, Free Gait provides the free_gait_core library to work with motion definitions and the free_gait_ros for interfacing ROS. To work with Python, use the free_gait_python library. For simple motion definitions, Free Gait supports actions defined in YAML format. For more information about using YAML actions, refer to YAML Scripting Interface.

Free Gait commands are expressed as a combination of leg (in joint or end-effector Cartesian space) and base motions with definition of position, velocity, and/or force/torque targets or trajectories.

Target Trajectory Automatic
Leg motion in joint space JointTarget JointTrajectory LegMode
Leg motion in Cartesian space EndEffectorTarget EndEffectorTrajectory Footstep
Base motion BaseTarget BaseTrajectory BaseAuto

Free Gait actions can be either launched manually or with help of the free_gait_action_loader.

Free Gait Action Loader

The free_gait_action_loader allows to launch actions through a ROS service or ROS action. Currently, the action loader supports YAML motion definitions, Python scripts, and starting ROS launch files for C++ and other libraries.

Run the free_gait_action_loader with

rosrun free_gait_action_loader action_loader.py

The free_gait_action_loader manages the actions and makes sure that only one action is running at the time. To register an action with the free_gait_action_loader, one has to load the action as a ROS plugin.

RQT Free Gait Action

The rqt_free_gait_action package provides a rqt user interface to the free_gait_action_loader. The interface shows the actions organized in collections and allows to preview and send the actions. Additionally, collections can be run as sequence of actions and with a right-click, a collection can be selected as favorite. Favorites are shown as buttons on the top for quick access.




RQT Free Gait Monitor

Once actions are being executed by the Free Gait action server, the rqt_free_gait_monitor shows the progress of the execution and allows to pause and stop the active action.






Free Gait RViz Plugin

Actions can be previewed with the free_gait_rviz_plugin. It takes the current state of the robot and visualizes the motion based on the defined action. This RViz plugin allows to scrub through time and visualize footholds, trajectories, support polygons etc.





YAML Scripting Interface

For simple motion sequences, Free Gait actions can be defined as a sequence of YAML definitions.

For example, this action lifts the right-fore leg of the robot:

adapt_coordinates:
 - transform:
    source_frame: footprint
    target_frame: odom

steps:
 - step:
   - base_auto:
 - step:
   - base_auto:
   - end_effector_target:
      name: RF_LEG
      ignore_contact: true
      target_position:
       frame: footprint
       position: [0.39, -0.22, 0.20]

The adapt_coordinates command transforms motions defined in the source_frame to the target_frame.

FAQ

Actions Are Not Found

If no Free Gait actions are found/loaded, this service call will return empty:

rosservice call /free_gait_action_loader/list_actions "collection_id: ''"

In this case, try initializing rosdep with:

sudo rosdep init
rosdep update

More Repositories

1

darknet_ros

YOLO ROS: Real-Time Object Detection for ROS
C++
2,158
star
2

ros_best_practices

Best practices, conventions, and tricks for ROS
C++
1,477
star
3

legged_gym

Isaac Gym Environments for Legged Robots
Python
1,188
star
4

ocs2

Optimal Control for Switched Systems
C++
802
star
5

elevation_mapping_cupy

Elevation Mapping on GPU.
Python
508
star
6

open3d_slam

Pointcloud-based graph SLAM written in C++ using open3D library.
C++
503
star
7

rsl_rl

Fast and simple implementation of RL algorithms, designed to run fully on GPU.
Python
487
star
8

se2_navigation

Pure Pursuit Control and SE(2) Planning
C++
439
star
9

traversability_estimation

Traversability mapping for mobile rough terrain navigation
C++
352
star
10

raisimLib

RAISIM, A PHYSICS ENGINE FOR ROBOTICS AND AI RESEARCH
325
star
11

xpp

Visualization of Motions for Legged Robots in ros-rviz
C++
293
star
12

graph_msf

A graph-based multi-sensor fusion framework. It can be used to fuse various relative or absolute measurments with IMU readings in real-time.
C++
259
star
13

icp_localization

This package provides localization in a pre-built map using ICP and odometry (or the IMU measurements).
C++
258
star
14

viplanner

ViPlanner: Visual Semantic Imperative Learning for Local Navigation
Python
236
star
15

delora

Self-supervised Deep LiDAR Odometry for Robotic Applications
Python
232
star
16

iPlanner

iPlanner: Imperative Path Planning. An end-to-end learning planning framework using a novel unsupervised imperative learning approach
Python
200
star
17

SimBenchmark

Physics engine benchmark for robotics applications: RaiSim vs Bullet vs ODE vs MuJoCo vs DartSim
C++
193
star
18

learning_quadrupedal_locomotion_over_challenging_terrain_supplementary

Supplementary materials for "Learning Locomotion over Challenging Terrain"
C++
173
star
19

raisimGym

Python
141
star
20

art_planner

Local Navigation Planner for Legged Robots
C++
132
star
21

perceptive_mpc

Code for "Perceptive Model Predictive Control for Continuous Mobile Manipulation"
C++
129
star
22

wild_visual_navigation

Wild Visual Navigation: A system for fast traversability learning via pre-trained models and online self-supervision
Python
126
star
23

tensorflow-cpp

Pre-built TensorFlow for C/C++ and CMake.
Shell
114
star
24

terrain-generator

Python
108
star
25

vitruvio

Vitruvio is a framework for rapid leg design analysis and optimization for legged robots. The purpose of the simulation framework is to guide the early stages of legged robot design. The end effectors track an input trajectory and the necessary joint speed, torque, power and energy for the tracking is computed.
MATLAB
88
star
26

L3E

Learning-based localizability estimation for robust LiDAR localization.
87
star
27

elmo_ethercat_sdk

C++
80
star
28

MPC-Net

Accompanying code for the publication "MPC-Net: A First Principles Guided Policy Search"
Python
79
star
29

tree_detection

This package implements a simple tree detector from point cloud data. It makes no assumptions about the ground plane and can handle arbitrary terrains.
C++
69
star
30

rayen

Imposition of Hard Convex Constraints on Neural Networks
Python
68
star
31

raisimOgre

https://rsl.ethz.ch/partnership/spinoff/raisim.html
67
star
32

smug_planner

C++
59
star
33

noesis

A Reinforcement Learning Software Toolbox for Robotics
C++
53
star
34

RSLGym

Reinforcement learning framework from RSL for policy training with RaiSim.
Python
48
star
35

hardware_time_sync

Guidelines on how to hardware synchronize the time of multiple sensors, e.g., IMU, cameras, etc.
46
star
36

anomaly_navigation

Anomaly Navigation - ANNA
Python
41
star
37

cerberus_darpa_subt_datasets

Datasets collected by Team CERBERUS during the DARPA Subterranean Challenge
39
star
38

RaiSimUnity

A visualizer for RaiSim based on Unity
31
star
39

raw_image_pipeline

Image processing pipeline for cameras that provide raw data
C++
31
star
40

soem_interface

This software package serves as a C++ interface for one or more EtherCAT devices running on the same bus. The lower level EtherCAT communication is handled by the SOEM library.
C
28
star
41

tcan

A library to communicate to devices connected through CAN, EtherCat, USB or TCP/IP.
C++
28
star
42

swerve_steering

C++
26
star
43

workflows

Collection of workflows, best-practices and guidelines for software development.
Python
26
star
44

radiance_field_ros

Implementation of Radiance Fields for Robotic Teleoperation
Python
25
star
45

terra

A grid world environment for high-level earthworks planning in JAX for RL.
Python
22
star
46

urdf2robcogen

A tool that translates a robot URDF description into the kindsl format that can be processed by RobCoGen.
C++
21
star
47

maxon_epos_ethercat_sdk

Implementation of an ethercat device driver for the maxon epos 4
C++
18
star
48

self_supervised_segmentation

Python
17
star
49

ocs2_robotic_assets

Various robotic assets for OCS2 Toolbox
CMake
17
star
50

cerberus_anymal_locomotion

C++
16
star
51

cuda_ue4_linux

C++
15
star
52

ethercat_sdk_master

A wrapper around SOEM to allow multiple masters and devices on EtherCAT
C++
14
star
53

ethercat_device_configurator

Manages setup yaml files for the RSL ethercat infrastructure
C++
14
star
54

lunar_planner

Python
14
star
55

pytictac

Simple Timing Utils
Python
13
star
56

catkin_create_rqt

An RQT plugin generator script, supporting several arguments to generate a rqt plugin for ROS, similar to catkin_create_pkg
Python
12
star
57

rl-blindloco

Project page for Science Robotics paper "Learning Quadrupedal Locomotion over Challenging Terrain"
HTML
11
star
58

learning_docker

Shell
9
star
59

any_ping_indicator

An Ubuntu indicator applet to show the ping status.
Python
8
star
60

plr-exercise

Python
7
star
61

terra-baselines

Train, visualize, and evaluate RL policies for the Terra environment.
Python
7
star
62

rsl_heap

CMake
7
star
63

anymal_brax

Python
7
star
64

perfectlyconstrained

Official implementations from the paper "Should We Relax a Bit? A Study on Degeneracy Mitigation in Point Cloud Registration"
7
star
65

unity_ros_teleoperation

C#
6
star
66

gtsam_catkin

Catkinized version of gtsam.
CMake
4
star
67

digbench

Benchmarks and map generation for the Terra environment.
Python
4
star
68

mobile_manipulation

Under construction
3
star
69

realsense_eth_robotics_summer_school_2019

Launch files and utility nodes for running the Realsense on SMB
CMake
2
star
70

xpp-release

Release repository of the xpp repo, necessary for ros hosting.
1
star
71

rsl_panoptic_mapping

C++
1
star
72

rsl_panoptic

Python
1
star
73

pretrained_depth_embedders

Python
1
star
74

darknet_ros-release

1
star
75

webapp-container

Scripts and tools to containerize a PHP-FPM, Nginx, Redis web-application ⚙️
Dockerfile
1
star